3M[™] Hearing Protection Solutions

The power to protect your world.™

Your World[™]

We live in a world where people don't always make the right choice. Health and safety professionals have a challenging job convincing people to wear protective equipment for their own safety. You must combine compliance to standards and regulations and employee safety, comfort, and even style. Everyone wants to look good, but they don't always want to wear protective equipment. We know this and it is why we continue to listen, test and add innovations to improve our products so people wear them longer.

We provide solutions for work situations requiring basic Personal Protective Equipment (PPE) through to environments that call for the most sophisticated and comprehensive protection. Whether the customer is a single tradesperson, medium sized business or an organisation employing thousands of workers, 3M has a workplace safety solution to meet your needs.

When job requirements call for special problem solving expertise, you can rely on 3M to use its diverse industry knowledge and history of innovation to give you the confidence and power to protect your world.

The 3M range of solutions for worker safety includes:

- **Respiratory Protection** Hearing Protection
- Eye, Head & Face Protection
- Worker Visibility
 - Detection & Monitoring

- Communications
- Welding Protection • Spill Management

- Body Protection

3M Safety brands you can trust:

Training and Support

3M's team of Specialist Representatives are available nationally, to provide support and training that meet the needs of our customers.

Furthermore, our qualified and highly experienced team are able to assist customers by:

- Conducting initial and ongoing assessments of the workplace.
- Recommending appropriate respiratory, hearing, eye protection, communication and spill management solutions required to maintain
 a safe work environment
- · Providing technical advice about the correct use and maintenance of the solution that has been selected
- Facilitate on-site fit testing for both respiratory and hearing protection solutions, as required

No matter how effective a piece of Personal Protective Equipment (PPE) is, it will offer little or no protection if it is not fitted and/or worn correctly. Proper inspection, cleaning and storage is vital for safety equipment that protects a worker's health and well-being.

That is why we offer training programs that explain the correct way to fit, inspect, clean and store the PPE designed and manufactured by 3M.

Technical Assistance

3M TechAssist is the ideal point of contact for your questions, especially when you require a prompt answer. Supported by trained staff, TechAssist is an immediate link to the worldwide resources of 3M.

Customers can contact TechAssist to answer questions on product information, technical advice, guidance with product selection, Australia/New Zealand Standards and other important information they need to know on a day-to-day basis.

See back cover for Technical Assistance contact details.

ANZ Distributor network

3M distributes our wide range of workplace safety products through a network of distributors, resellers and retailers throughout Australia and New Zealand.

Detection

ME (•(•(•

Protection

Validation

When it comes to protecting workers' hearing, there is no one-size-fits-all solution.

Understanding the challenge requires accurate sound detection. Delivering the right solution demands the right protection for the job. Verifying solutions calls for a validation system.

We deliver a complete set of tools needed to detect, protect and validate. It's 3M hearing protection solutions made innovatively easy.

Introduction

Selection Chart	3
The Solution – Detection, Protection & Validation	5
Industry User Profiles	7
3M [™] E-A-Rfit [™] Validation System	9
Technology & Support	10

3M[™] Detection Solutions

3M™	Noise Indicator NI-100	12
3M™	Sound Detector SD-200	12

3M[™] Disposable Foam Earplugs

E-A-R [™] Classic [™]	14
E-A-R [™] Classic [™] Platinum [™]	14
E-A-R [™] Classic [™] SuperFit [™]	15
E-A-Rsoft [™] Yellow Neons [™]	15
E-A-Rsoft [™] Yellow Neon Blasts ^{™™}	16
E-A-Rsoft [™] SuperFit [™]	16
E-A-Rsoft [™] FX [™]	17
E-A-R [™] TaperFit [™] 2	17
E-A-R [™] Metal Detectable	18
3M [™] Nitro [™]	18
3M™ 1120 Foam	19
3M™ 1100 Foam	19
3M [™] One Touch [™]	20
E-A-R [™] Vending Packs	20
E-A-R [™] Trade Packs	21

3M[™] Push-to-Fit Earplugs

E-A-R [™] Express [™] Pod Plugs [™]	23
E-A-R [™] Push-Ins [™]	23
E-A-R [™] Push-Ins [™] with Grip Rings	24
3M [™] Pistonz [™]	24
3M [™] Skull Screws [™]	25
3M [™] No-Touch [™]	25
Support Materials	26

3M[™] Reusable Earplugs

E-A-R [™] UltraFit [™]	28
E-A-R [™] UltraFit [™] 27	28
E-A-R [™] UltraFit [™] Plus	29
Tri-Flange [™]	29
1200	30
ClearE-A-R [™] 20	30
E-A-R [™] Combat Arms [™] Dual Ended	31
E-A-R [™] Combat Arms [™] Single Ended	31

3M[™] Banded Hearing Protectors

E-A-Rflex [™]	33
E-A-R [™] Caboflex [™]	33
E-A-Rcaps™	34
E-A-R [™] Swerve [™]	34
3M™ 1310	35

3M[™] Passive Earmuffs

Peltor [™] H10	37
Peltor [™] H9	37
Peltor™ H7	38
Peltor™ H6	38
Peltor™ H31	39
Peltor [™] PLT [™]	39
Peltor™ H9A-02 Food Industry	40
Peltor [™] H505B Welding	40
Peltor™ Bull's Eye	41
Peltor™ X4	41
Peltor™ X5	42
Peltor™ Hygiene Tear Away Pads	42
Peltor™ H510AK Kids	43
3M™ 1426	43
3M™ 1436	44

3M[™] E-A-Rfit[™] Validation System

E-A-Rfit [™] Validation System	52
---	----

Selection Chart

AS/NZS Class	Class 1	Class 2	Class 3	Class 4	Class 5	
Exposure Levels (L _A eq 8hr)	85 < 90dB	90 < 95dB	95 < 100dB	100 < 105dB	105 < 110dB	≥ 110dB
No Roll Down Earplugs			Express	Push-Ins Pistonz No Touch	Push-Ins with Grip Rings Skull Screws	Seek advice from your rep
Disposable Earplugs			Classic (corded) 1100 1110	Classic Classic Platinum Classic Superfit 30 E-A-Rsoft Superfit E-A-Rsoft Metal Detectable E-A-Rsoft Yellow Neons E-A-Rsoft Yellow Neon Blast 1120	E-A-Rsoft FX, TaperFit 2	Seek advice from your rep
Reuseable Earplugs			Ultrafit EZ-Ins Ultrafit Metal Detectable Ultrafit Plus Ultrafit Plus Tri Flange 1270 1290/1291	Ultrafit 27		Seek advice from your rep
Banded Earplugs	Caboflex 600 E-A-R Caps	E-A-Rflex Foam E-A-Rflex Metal Detectable	Swerve with FLEX 28 Tips 1310	Swerve with Comfort Pods		Seek advice from your rep
Earmuffs				H6 Series H9 Series H505B Series	H10 Series, H7 Series H9A-02 Series 1426 1436	Seek advice from your rep
Earmuffs with Communications				SportTac	Pro Tac II Push-to-Listen Worktunes Plus Lite-Com III	Seek advice from your rep

The Real World Concerns of Hearing Protection

Variable Noise Levels: Every environment is different, and workers can face a wide range of sound levels throughout the day and in different areas at the same facility.

The Human Factor: Each person is physically unique, so there is no one-size-fits-all hearing protection solution. The key to achieving optimal protection is having the best fit possible.

Employee Communication: Many employees need to be able to communicate easily with co-workers and listen for workplace warning sounds, while being protected from hazardous noise levels.

What Types of Sounds Require Hearing Protection?

At home and work, it's important to understand which sounds may cause hearing loss and require hearing protection:

Work Scale Decibels (dRA)*

Home Scale Decidels (dBA)^			WORK Scale Decidels (dBA)^			
12-Gauge Shotgun	160		160 150 140		Jet Takeoff	140
Basketball Game Crowd Noise	120		130 120		Jackhammer Pneumatic Riveter	135 124
Chainsaw	110		110		Hammer Drill	114
Rock Concert Motorcycle	105 100		100 90		Tractor / Hand Drill	97
Lawn Mower	90				Belt Sander	93
Vacuum Cleaner	80		80		City Traffic	78
Mid-Sized Auto Interior	70		70			
Conversation	60		60		Air Conditioning Unit	60
Floor Fan	50		50		Electrical Transformer	45
Refrigerator Hum	40		40			10
Rustling Leaves	30		30		*As reported by Centers for Disease Control and Prevention: www.cdc.gov/niosh/topics/noise/noisemeter.html	ania afaa
Watch Ticking	20		20 10		Other sources include: http://e-a-r.com/hearingconservation/faq-rn http://www.cdc.gov/niosh/topics/noise/chart-carpenters.html, http://www.nidcd.nih.gov/health/statistics/Pages/quick.aspx	iani.cim,

Home Scale Decibels (dBA)*

The Solution of Validation The Solution of Validation of V

As a global leader in sound and noise detection, hearing protection and fit test validation, 3M delivers easy and comprehensive solutions to complex hearing protection challenges.

Accurate Noise Detection. The first step in solving the challenge is to measure the noise levels facing your workers. 3M detection solutions make it easy to measure noise hazards, so you can select the appropriate protection for the job. Our detection instruments deliver accurate and reliable measurements, and detection management software makes it easy to report and share data.

Adaptable Hearing Protection. 3M delivers an unmatched variety of innovative hearing protectors, making it easy to select the right solution for the job. A variety of sizes and materials are available, helping your team determine the right fit for

each person, and the right protection for the application. Our innovative products are designed for comfortable, extended wear, and they can help your team comply with your safety program.

Fit Test Validation. Integrating hearing protector fit testing into your hearing conversation program benefits everyone from new hires to high-risk workers. The 3M[™] E-A-Rfit[™] Validation System makes it easier to fit, train and motivate workers and to assess and manage the long-term performance of your hearing conservation program.

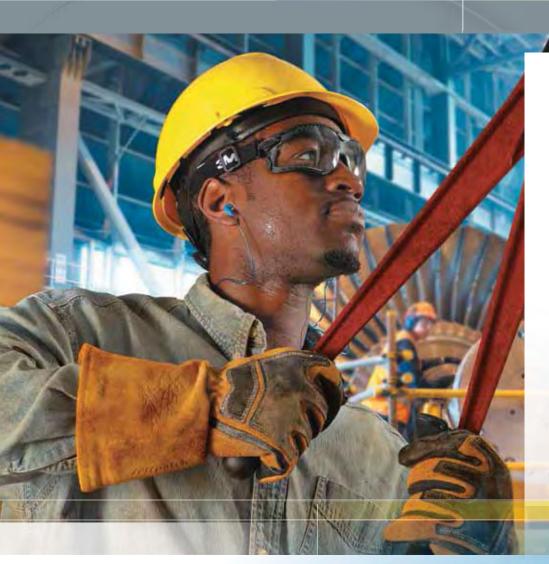
3M's broad range of hearing protection devices in a variety of styles and materials helps you solve many of the challenges facing workers in various environments.

Food Industry Worker

Susan works indoors at a food processing plant in a damp, refrigerated area. She leaves her hearing protectors in throughout her entire shift.

She needs metal detectable earplugs or easy-to-clean earmuffs. And they have to be comfortable.

"In my job, I don't want complicated hearing protection. Just keep it simple."



Production Manager

John works indoors, and moves in and out of noisy areas continuously throughout the day. Most of the time he is on the phone or a two-way radio.

He needs a hearing protection solution with wireless 2-way radio communications and ambient listening. In short, he needs to hear and communicate in noisy areas to do his job.

"I need to be able to hear my co-workers communicate with me."

Iron Worker

Bill works in hot and humid environments, and often in tight spaces. He's constantly moving and takes his earplugs out frequently.

He needs large-sized earplugs that don't have to be rolled down before inserting. If he's also wearing earmuffs, they need to fit within his welding helmet.

"I don't like boring products. Give me some interesting choices for my hearing protection."

Machine Operator

Julia works at the same station every day and wears safety glasses throughout her entire shift.

She needs small-sized earplugs or earmuffs that are comfortable for extended wear.

"My hearing protection has got to be comfortable. That's my top priority."

Finding the Right Fit with the 3M[™] E-A-Rfit[™] Validation System

The E-A-Rfit Validation System measures the level of employee hearing protection by generating a Personal Attenuation Rating (PAR) in just 10 seconds per ear. The PAR indicates a workers' noise reduction levels for a given fitting and hearing protector.

The E-A-Rfit validation system assists employers in achieving optimal fit through hearing protection selection and employee training.

The E-A-Rfit Validation System

An Integral Part of Your Hearing Protection Program

Integrating hearing protector fit testing into your hearing conservation program benefits everyone from new hires to high-risk workers.

The 3M[™] E-A-Rfit[™] Validation System Helps You:

Fit, Train and Motivate

- Serves as a tool for training proper fitting techniques and assessing fitting proficiency.
- Great for refitting or retraining after temporary threshold shifts (TTSs) are detected.
- Motivates employees by helping them realise the control they have in protecting their hearing.

Audit Your Team

- Establishes baseline values for new workers.
- Helps to identify workers receiving inadequate protection.
- Validates high protection levels required by workers in high noise areas.

Assess and Manage

- Improves long-term performance of your hearing conservation program.
- Indicates which employees need further fit training or alternative hearing protectors.
- After noise exposure data is input, the E-A-Rfit software can help identify the most appropriate hearing protector(s) and help minimize over/under protection.

Technology and Support from the Hearing Protection Experts

Employee Education and

Training. The 3M Hear Force Training provides valuable on-site training and seminars

throughout Australia and New Zealand, helping employers and their workers achieve their hearing conservation goals. This training is based on AS/NZS 1269.3 and is conveniently performed on-site at no cost. Whether it's explaining attenuation ratings or regulations, or providing the motivation workers need to comply, 3M Hear Force trainers are available to help you achieve your hearing conservation program objectives. They're experts in hearing conservation training and will work with your team to help ensure your employees are protected with the right equipment for their jobs.

Understanding Sound Level Conversion (SLC₈₀). A SLC₈₀ rating is determined based on how well the hearing protector performed in a laboratory. However, each hearing protector's SLC₈₀ is not always a good estimate for workplace noise

reduction. Many factors, such as the relationship between the size of the wearer and size of the hearing protector, and how it has been inserted or fitted, can impact how effective that hearing protector will be. That's why it is so important to have the E-A-Rfit validation system as part of your hearing conservation program and the support of a hearing protection team with over 40 years of expertise.

Innovation from the Experts. At 3M, we understand the challenges of the workplace, the complexities of fitting protection devices, and the importance of creating adaptable solutions for maximising hearing protection. Our innovations in noise detection, protection and validation are designed to solve real-world challenges, providing our customers with the advanced and comprehensive solutions needed to help protect workers.

Validation

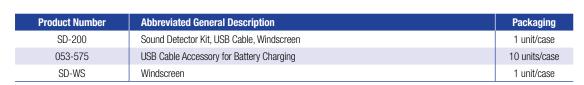
Detection is the first step in identifying where hearing protection may be needed. 3M delivers intuitive solutions for effective noise monitoring programs. Durable, accurate, and easy-to-use instrumentation makes it simple to report and share noise exposure data. 3M Detection products deliver innovatively simple solutions to complex monitoring challenges.

Detection Products

Noise Indicator NI-100

The 3M[™] Noise Indicator NI-100 alerts the wearer to potentially dangerous noise levels, helping identify areas where hearing protection may be needed. Users clip the Noise Indicator to a shirt or jacket, and its LED light provides a clear indication when noise levels exceed a potentially hazardous threshold. The NI-100's small size and lightweight design make it ideal for workers in a variety of industries.

- Affordable lightweight noise monitor with a durable, easy-to-use design
- · Rechargeable battery that operates for up to 200 hours between charges
- Flashing green LED indicates if noise level is below 85 dBA
- Flashing red LED indicates noise level is above 85 dBA, indicating hearing protection may be needed



Product Number	Abbreviated General Description	Packaging
NI-100	Noise Indicator	10 units/case
053-575	USB Cable Accessory for Battery Charging	10 units/case

Sound Detector SD-200

The 3M[™] Sound Detector SD-200 is a compact, lightweight sound level meter designed for measurement of workplace noise levels. Its intuitive design makes it easy for users to measure sound levels and helps determine the attenuation of hearing protection that may be required. The integrating feature computes the average sound pressure level, allowing for more accurate assessment of intermittent sound levels.

- Simple, user-friendly interface; green, yellow and/or red LEDs flash when preset noise levels are reached
- A rechargeable lithium polymer battery operates up to 50 hours between charges
- Average sound pressure level delivers a steady reading where noise levels are highly variable
- Features a Class/Type 2 microphone
- Measures Sound Pressure Level (SPL), Average value (L_{E0}/L_{AVG}), LED alert, Maximum value (MAX), Minimum value (MIN), Run-Time, Overload (OL) and Under-Range (UR)
- Display range is 40 to 130 dB (Dynamic Range)

For more information on 3M's extensive range of detection products, please contact: Air-Met Scientific on 1800 000 744 (AU) or Global Science New Zealand on 0800 734 100 (NZ)

Validation

sposable Earplugs

3M[™] Disposable Earplugs, made from expandable slow-recovery foam, provide the best combination of comfort and protection for most users. Once in the ear, foam earplugs expand to conform to the unique shape of each ear, providing a comfortable, custom fit. 3M provides a wide range of disposable roll-down earplugs so you can choose the best solution for your individual needs.

3M[™] E-A-R[™] Disposable Foam Earplugs

E-A-R[™] Classic[™] Earplugs

Classic earplugs were the industry's first foam earplugs, virtually revolutionising hearing protection. Today, the revolution continues. It meets more wearer and environmental needs with its proprietary foams, preferred cylindrical shape, and proven in-ear comfort.

Available with Cord	~
Moisture Resistant	~
Reusable	
Metal Detectable	
Slow-Recovery Foam	~
No Roll-Down Required	

VP312-1201

Packaging Product Number **Abbreviated General Description** 311-1101 Classic Earplug Corded, SLC⁸⁰ 21dB (Class 3) 200 pairs/box, 10 boxes/case 310-1001 Classic Earplug Uncorded, Pillow Pack 200 pairs/box, 10 boxes/case 312-1201 Classic Earplug Uncorded, Poly Bag 200 pairs/box, 10 boxes/case 391-1001 Classic One Touch Refill 500 pairs/bottle, 4 bottles/case VP311-1101 Classic Earplug Corded, Vending Pack, SLC⁸⁰ 21dB (Class 3) 5 pairs/bag, 100 bags/case

SLC₈₀ 23dB (Class 4)

Classic Uncorded Earplug Vending Pack

E-A-R[™] Classic[™] Platinum[™] Earplugs

The diameter of a Classic Platinum earplug is smaller than the Classic earplug (and the same length) to help provide optimum comfort and protection in narrow ear canals.

Available with Cord	
Moisture Resistant	~
Reusable	
Metal Detectable	
Slow-Recovery Foam	~
No Roll-Down Required	

5 pairs/bag, 100 bags/case

 $SLC_{_{80}}$ 23dB (Class 4)

Product Number	Abbreviated General Description	Packaging
310-4002	Classic Platinum Earplug Uncorded, Pillow Pack	200 pairs/box, 10 boxes/case
310-4003	Classic Platinum Earplug Uncorded, Poly Bag	200 pairs/box, 10 boxes/case
391-1007	Classic Platinum One Touch Refill	500 pairs/bottle, 4 bottles/case

3M[™] E-A-R[™] Disposable Foam Earplugs

E-A-R[™] Classic[™] SuperFit[™] 30 Earplugs

SuperFit earplugs are the only earplug model with a unique "fitting ring" to easily see when the earplug is correctly fitted. When no orange color is visible, the best fit is achieved.

Available with Cord	~
Moisture Resistant	~
Reusable	
Metal Detectable	
Slow-Recovery Foam	~
No Roll-Down Required	

SLC₈₀ 23dB (Class 4)

Product Number	Abbreviated General Description	Packaging
311-1126	Classic SuperFit 30 Earplug Corded, Poly Bag, SLC ⁸⁰ 22dB (Class 4)	200 pairs/box, 10 boxes/case
312-4201	Classic SuperFit 30 Earplug Uncorded, Poly Bag	200 pairs/box, 10 boxes/case
391-1009	Classic SuperFit 30 One Touch Refill	500 pairs/bottle, 4 bottles/case

E-A-Rsoft[™] Yellow Neons[™] Earplugs

E-A-Rsoft Yellow Neons have a smooth texture for in-ear comfort and are made of an advanced foam formulation for all-day wearability. Offered in two sizes to comfortably fit in a wide range of ears, these high attenuation earplugs are ideal for many different noisy applications. Brightly colored for hearing protection compliance sighting, E-A-Rsoft Yellow Neons earplugs are an excellent choice for any hearing conservation program.

SLC₈₀ 23dB (Class 4)

Product Number	Abbreviated General Description	Packaging
311-1250*	E-A-Rsoft Yellow Neons Regular Earplug Corded, Pillow Pack	200 pairs/box, 10 boxes/case
312-1250	E-A-Rsoft Yellow Neons Regular Earplug Uncorded	200 pairs/box, 10 boxes/case
311-1251	E-A-Rsoft Yellow Neons Large Earplug Corded	200 pairs/box, 10 boxes/case
312-1251	E-A-Rsoft Yellow Neons Large Earplug Uncorded	200 pairs/box, 10 boxes/case
311-4106	E-A-Rsoft Yellow Neons Metal Detectable Earplug with Metal Detectable Cord	200 pairs/box, 10 boxes/case
310-1250*	E-A-Rsoft Yellow Neons Uncorded, Pillow Pack	200 pairs/box, 10 boxes/case
391-1004	E-A-Rsoft Yellow Neons One Touch Refill	500 pairs/bottle, 4 bottles/case

* Only available in NZ

E-A-Rsoft[™] Yellow Neon Blasts[™] Earplugs

E-A-Rsoft Yellow Neon Blasts earplugs are made from a slowly expanding, polyurethane foam material. They provide evenly distributed pressure, giving flexibility and a good seal with optimum comfort. A red flame design adds fun to serious hearing protection.

~
~

SLC₈₀ 23dB (Class 4)

Product Number	Abbreviated General Description	Packaging
311-1252	E-A-Rsoft Yellow Neon Blasts Regular Earplug Corded	200 pairs/box, 10 boxes/case
312-1252	E-A-Rsoft Yellow Neon Blasts Regular Earplug Uncorded	200 pairs/box, 10 boxes/case
391-1010	E-A-Rsoft Yellow Neon Blasts Regular One Touch Refill	500 pairs/bottle, 4 bottles/case

E-A-Rsoft[™] SuperFit[™] Earplugs

E-A-Rsoft SuperFit earplugs have a smooth texture for in-ear comfort and are made of an advanced foam formulation for outstanding softness. The exclusive orange fitting ring design provides a built-in visual to help confirm proper fit.

Available with Cord	~
Moisture Resistant	
Reusable	
Metal Detectable	
Slow-Recovery Foam	~
No Roll-Down Required	

SLC₈₀ 24dB (Class 4)

Product Number	Abbreviated General Description	Packaging
311-1254	E-A-Rsoft SuperFit Regular Earplug Corded	200 pairs/box, 10 boxes/case
312-1256	E-A-Rsoft SuperFit Regular Earplug Uncorded	200 pairs/box, 10 boxes/case
312-1255	E-A-Rsoft SuperFit Large Earplug Uncorded	200 pairs/box, 10 boxes/case
391-1254	E-A-Rsoft SuperFit Regular One Touch Refill	500 pairs/bottle, 4 bottles/case

3M[™] E-A-R[™] Disposable Foam Earplugs

E-A-RSOftTM FXTM **Earplugs** FX earplugs feature a bell shape and super-soft, slow-recovery foam to effectively seal the ear canal and provide reliable hearing protection. Flared end helps make fitting and removal easier.

Available with Cord 🗸	
Moisture Resistant	
Reusable	
Metal Detectable	
Slow-Recovery Foam 🗸	
No Roll-Down Required	

SLC₈₀ 26dB (Class 5)

Product Number	Abbreviated General Description	Packaging
312-1261	E-A-Rsoft FX Earplug Uncorded	200 pairs/box, 10 boxes/case
312-1260	E-A-Rsoft FX Earplug Corded	200 pairs/box, 10 boxes/case

E-A-R[™] TaperFit[™] II Earplugs

Soft, roll-down foam earplugs conform to the unique shape of each ear canal to provide a low-pressure, comfortable seal. Offered in two sizes to fit most ears comfortably.

Metal Detectable Slow-Recovery Foam No Roll-Down Required SLC₈₀ 26dB (Class 5)

Available with Cord Moisture Resistant Reusable

Product Number	Abbreviated General Description	Packaging
312-1219	E-A-R™ TaperFit™ II Regular Earplug Uncorded	200 pairs/box, 10 boxes/case
312-1221	E-A-R™ TaperFit™ II Large Earplug Uncorded	200 pairs/box, 10 boxes/case
312-1224	E-A-R [™] TaperFit [™] II Large Earplug Corded	200 pairs/box, 10 boxes/case

EAR

E-A-R[™] Metal **Detectable Earplugs**

All 3M[™] Metal Detectable Earplugs have an integral stainless steel ball encased in the earplug. Ideal for use in food manufacturing industries, when contamination prevention is critical. Available in a variety of comfortable earplug styles to meet most wearer preferences and environmental needs.

Available with Cord	~
Moisture Resistant	
Reusable	
Metal Detectable	~
Slow-Recovery Foam	~
No Roll-Down Required	

SLC₈₀ values included in the description box below.

Product Number	Abbreviated General Description	Packaging
311-4106	E-A-Rsoft Yellow Neons Metal Detectable Earplug with Metal Detectable Cord ${\rm SLC}_{_{80}}$ 23dB (Class 4)	200 pairs/box, 10 boxes/case
340-4007	Ultra Fit Metal Detectable Earplug with Metal Detectable Cord ${\rm SLC}_{\rm 80}$ 18dB (Class 3)	100 pairs/box, 4 boxes/case
350-3101	E-A-Rflex Metal Detectable Banded Earplug with Metal Detectable Arms $SLC_{\rm g0}$ 15dB (Class 2)	1 band/bag, 10 bags/case

3M[™] Nitro[™] Earplugs

With today's louder lifestyles, younger workers are an even bigger challenge when encouraging hearing protection compliance. Nitro earplugs offer a variety of eye-popping colors in each dispenser box, which promotes hearing protection compliance sighting. Advanced foam formulation conforms to the unique shape of each earcanal for enhanced comfort and fit.

Available with Cord	~
Moisture Resistant	
Reusable	
Metal Detectable	
Slow-Recovery Foam	~
No Roll-Down Required	

SLC₈₀ 26dB (Class 5)

Product Number	Abbreviated General Description	Packaging
P1001	Nitro Earplug Corded, SLC ₈₀ 27dB (Class 5)	100 pairs/box, 10 boxes/case
P1000	Nitro Earplug Uncorded	200 pairs/box, 10 boxes/case

3M[™] E-A-R[™] Disposable Foam Earplugs

3M[™] 1120 Foam Earplugs

The unique articulated design reduces pressure inside the ear canal for improved all day comfort. Soft hypo-allergenic foam provides greater comfort and is less sensitive to temperature.

~
~
~

SLC₈₀ 22dB (Class 4)

Product Number	Abbreviated General Description	Packaging
1120	Foam Earplug Uncorded	200 pairs/box, 5 boxes/case
1130	Foam Earplug Corded	100 pairs/box, 5 boxes/case
1120-BT	Foam Earplug One Touch Refill	500 pairs/bottle, 1 bottle/case

3M[™] 1100 Foam Earplugs

Get the protection you need from the brand you can trust — at an affordable price — with 3M 1100 and 1110 earplugs. Soft, hypoallergenic foam and a tapered design provide a noise-reducing seal in the earcanal. 3M 1100 and 1110 earplugs are easy to roll down, and once fitted in the ear, soften with body temperature for comfortable extended wear.

Available with Cord	~
Moisture Resistant	~
Reusable	
Metal Detectable	
Slow Recovery Foam	~
No Roll-Down Required	

Product Number	Abbreviated General Description	Packaging
1100	Foam Earplug Uncorded	200 pairs/box, 5 boxes/case
1110	Foam Earplug Corded	100 pairs/box, 5 boxes/case
1100-BT	Foam Earplug One Touch Refill	500 pairs/bottle, 1 bottle/case

3M[™] One Touch[™] Dispenser

The One Touch dispenser offers convenient access to workers on the move. The "No Waste Funnel" delivers earplugs with each turn. The reusable, free-standing base can be re-stocked with One Touch refills of our most popular 3M[™] E-A-R[™] Earplugs. The versatile design includes tabletop or wall-mount options for convenient dispensing.

Refill Bottles

Classic™

Yellow Neons™

Yellow Neon Blasts[™] E-A-Rsoft[™] SuperFit[™]

1100

Solar™

Product Number	Abbreviated General Description	Packaging
391-1000	One Touch Dispensing Unit with Stand	1 dispenser/case
391-1001	Classic One Touch Refill	500 pairs/bottle, 4 bottles/case
391-1009	Classic SuperFit 30 One Touch Refill	500 pairs/bottle, 4 bottles/case
391-1004	E-A-Rsoft Yellow Neons One Touch Refill	500 pairs/bottle, 4 bottles/case
391-1008	E-A-Rsoft Yellow Neons Large One Touch Refill	500 pairs/bottle, 4 bottles/case
391-1010	E-A-Rsoft Yellow Neon Blasts Reg. One Touch Refill	500 pairs/bottle, 4 bottles/case
391-1254	E-A-Rsoft SuperFit Reg One Touch Refill	500 pairs/bottle, 4 bottles/case
391-1007	Classic Platinum One Touch Refill	500 pairs/bottle, 4 bottles/case
1100-BT	3M 1100 Foam Earplug One Touch Refill	500 pairs/bottle, 1 bottle/case
1120-BT	3M 1120 Foam Earplug One Touch Refill	500 pairs/bottle, 1 bottle/case
PN-01-011	3M Solar Foam Earplug One Touch Refill	500 pairs/bottle, 4 bottles/case

E-A-R[™] Vending **Packs**

Earplugs conveniently packaged for vending purposes.

Push-Ins™

UltraFit™

UNCEL

Product Number	Abbreviated General Description	Packaging
VP311-1101	Classic Corded, Vending Pack, SLC ₈₀ 21dB (Class 3)	5 pairs/bag, 100 bags/case
VP312-1201	Classic Uncorded Earplug, Vending Pack, SLC ₈₀ 23dB (Class 4)	5 pairs/bag, 100 bags/case
VP318-1001	Push-Ins Corded, Vending Pack, SLC ₈₀ 23dB (Class 4)	5 pairs/bag, 100 bags/case
VP340-4004	UltraFit Corded, Vending Pack, SLC ₈₀ 18dB (Class 3)	5 pairs/bag, 100 bags/case

3M[™] E-A-R[™] Disposable Dispensers

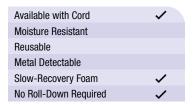
E-A-R[™] Trade Packs

The Trade Packs are a convenient pocket sized pack designed to reduce wastage and cost. They are ideal for small businesses such as contractors and trades people looking to purchase quality PPE in a packout configuration that suits their consumption.

Product Number	Abbreviated General Description	Packaging
TP391-1001	Classic Uncorded Trade Pack SLC ₈₀ 23dB (Class 4)	10 pairs/pack, 12 packs/case
TP312-1261	FX Uncorded Trade Pack SLC ₈₀ 26dB (Class 5)	10 pairs/pack, 12 packs/case
TP318-1009	Push Ins w/Grip Rings Corded Trade Pack SLC ₈₀ 26dB (Class 5)	5 pairs/pack, 12 packs/case
TP340-4004	Ultrafit Corded Trade Pack SLC ₈₀ 18dB (Class 3)	5 pairs/pack, 12 packs/case

Push-to-Fit Earplugs

Simply hold 3M[™] Push-to-Fit Earplugs by the stem then push them into place. There is no roll-down required for a clean and comfortable fit. The soft foam tip quickly adjusts to the shape of the earcanal to help create a noise-reducing seal. Since you don't touch the foam tip, they are easy to fit and keep clean, even when your hands are dirty or you are wearing gloves.


3M[™] E-A-R[™] Push-to-Fit Earplugs

E-A-R[™] Ex The unique pod design of Exp easily so the earplug slides g an effective seal for most ear	press earplugs a ently into the ea	llows the foam to compress Ir and expands slowly, making		EAR
Available with Cord	~			
Moisture Resistant				
Reusable				
Metal Detectable				
Slow-Recovery Foam	~			
No Roll-Down Required	~	SLC ₈₀ 19dB (Class 3)		
Product Number	Abbreviated	General Description	Packaning	L

Product Number	Abbreviated General Description	Packaging
321-2115	Express Assorted Earplug Corded, Pillow Pack	100 pairs/box, 4 boxes/case
321-3200	Express Assorted Earplug Uncorded, Pillow Pack	100 pairs/box, 4 boxes/case

E-A-R[™] Push-Ins[™] Earplugs

No roll-down is required with these earplugs. A gentle push is all it takes for easy, consistent fitting. Blue stem makes fitting and removal easy and helps keep the tips clean when the wearer's hands are dirty. The unique, soft 3M[™] E-A-Rform[™] Foam Tip is shaped and sized to mold comfortably to fit most ear canals.

SLC₈₀ 23dB (Class 4)

Product Number	Abbreviated General Description	Packaging
318-1003	Push-Ins Earplug Corded	200 pairs/box, 10 boxes/case
318-1002	Push-Ins Earplug Uncorded	200 pairs/box, 10 boxes/case
VP318-1001	Push-Ins Earplug Corded, Vending Pack	5 pairs/bag, 100 bags/case

E-A-R[™] Push-Ins[™] with Grip Rings

EAR.

Push-Ins earplugs with proprietary Grip Rings gently seal the ear canal to enhance fit. The flexible stem makes insertion and removal easy and helps keep the tips clean when the wearer's hands are dirty. Foam tips made of soft polyurethane foam.

\checkmark
~
~

SLC₈₀ 26dB (Class 5)

Product Number	Abbreviated General Description	Packaging
318-1009	Push-Ins with Grip Rings Earplug Corded	200 pairs/box, 10 boxes/case
318-1008	Push-Ins with Grip Rings Earplug Uncorded	200 pairs/box, 10 boxes/case

3M[™] Pistonz[™] Earplugs

These earplug tips look like metal, but feel ultra-soft. They are made of a specially formulated foam that is so soft and comfortable the earplugs can be worn all day long. The cylindrical shape is designed to fit and seal most size ear canals. The stem is stiff enough to insert yet is designed to flex sideways if impacted during wear. No need to roll foam tips before fitting. Just grip the stem and insert tip into the ear canal — right out of the package.

Available with Cord	\checkmark
Moisture Resistant	
Reusable	
Metal Detectable	
Slow-Recovery Foam	~
No Roll-Down Required	~

SLC₈₀ 25dB (Class 4)

Product Number	Abbreviated General Description	Packaging
P1401	Pistonz Earplug Corded	100 pairs/box, 4 boxes/case
P1400	Pistonz Earplug Uncorded	100 pairs/box, 4 boxes/case

3M[™] E-A-R[™] Push-to-Fit Earplugs

3M[™] Skull Screws[™] Earplugs

Skull Screws earplugs perform as tough as they look by providing excellent protection for noisy environments. The metallic colour makes the earplugs look solid, but they are made from ultra-soft foam that provides day long comfort. Grab the attention of your young workers with these radically designed, push-to-fit earplugs and help boost hearing protection and compliance at the same time.

Available with Cord	~
Moisture Resistant	
Reusable	
Metal Detectable	
Slow-Recovery Foam	~
No Roll-Down Required	~

SLC₈₀ 26dB (Class 5)

Product Number	Abbreviated General Description	Packaging
P1300	Skull Screws Earplug Uncorded	120 pairs/box, 4 boxes/case
P1301	Skull Screws Earplug Corded	120 pairs/box, 4 boxes/case

3M[™] No-Touch[™] Earplugs

Soft, purple No-Touch push-to-fit foam earplugs create a hygienic, noise-reducing seal in the ear canal with soft foam, a smooth tapered shape and paddle stems. Push-to-fit design makes fitting hearing protection easy, with no roll-down required. Available with or without cord.

Product Number	Abbreviated General Description	Packaging
P2001	No-Touch Earplug Corded	100 pairs/box, 4 boxes/case
P2000	No-Touch Earplug Uncorded	100 pairs/box, 4 boxes/case

Support Materials

The perfect tools to enhance your hearing conservation training.

www.e-a-r.com/hearingconservation/booklet_main.cfm

Product Number	Abbreviated General Description	Packaging
319-1002	Clear Ear	1 unit/case
319-1003	Roll Model	1 unit/case
85099-00000	Ear Gauge ear canal Sizing Tool	50 units/case

Reusable Earblugs

EAR

These durable, long-lasting earplugs are made from soft, flexible materials that are washable and reusable. The tapered tips are pre-molded to fit a wide range of earcanal sizes comfortably. Available in a variety of styles and protection levels.

3M[™] E-A-R[™] Reusable Earplugs

E-A-R[™] UltraFit[™] Earplugs

A proven triple-flange design and pliable, premolded material make UltraFit earplugs a more comfortable fit for most ear canals. These durable, reusable earplugs are easy to use again and again, reducing waste. They can be cleaned easily with soap and water. Since there is no need to roll them down before fitting, simply push them into the ear canal for clean and comfortable noise reduction.

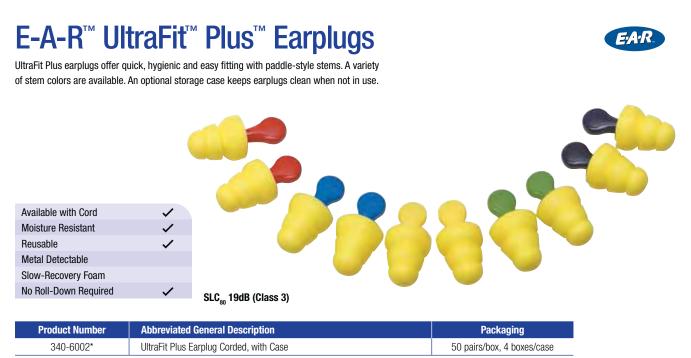
Available with Cord	\checkmark
Moisture Resistant	\checkmark
Reusable	\checkmark
Metal Detectable (340-4007 only)	\checkmark
Slow-Recovery Foam	
No Roll-Down Required	\checkmark

Product Number **Abbreviated General Description** Packaging 340-4002 UltraFit Earplug Corded, with Case 50 pairs/box, 4 boxes/case 340-4004 UltraFit Earplug Corded 100 pairs/box, 4 boxes/case VP340-4004 UltraFit Earplug Corded, 5-Pair Vending Pack 5 pairs/bag, 100 bags/case 340-4001 UltraFit Earplug Uncorded, with Case 50 pairs/box, 4 boxes/case 340-4007 UltraFit Metal Detectable Earplug Corded 100 pairs/box, 4 boxes/case

SLC₈₀ 18dB (Class 3)

E-A-R[™] UltraFit[™] 27 Earplugs

Soft, flexible triple-flange tips provide enhanced fitting and noise reduction. Pistol-grip stems provide fingertip control for easy fitting.


Available with Cord	\checkmark
Moisture Resistant	\checkmark
Reusable	\checkmark
Metal Detectable	
Slow-Recovery Foam	
No Roll-Down Required	~

Product Number	Abbreviated General Description	Packaging
340-8002	UltraFit 27 Earplug Corded	100 pairs/box, 4 boxes/case
340-8001	UltraFit 27 Earplug Uncorded	100 pairs/box, 4 boxes/case

3M[™] E-A-R[™] Reusable Earplugs

* Only available in NZ

3M[™] Tri-Flange[™] Earplugs

Soft, flexible flanges adapt to the shape of the ear canal to comfortably reduce exposure to noise. The plastic stem allows the wearer to fit the earplugs quickly and easily without touching the premolded tips. Choose from a vinyl or cloth cord.

Product Number	Abbreviated General Description	Packaging
P3000	Tri-Flange Earplug Corded	100 pairs/box, 4 boxes/case
P3001	Tri-Flange Earplug with Cloth Cord	100 pairs/box, 4 boxes/case

3M[™] 1200 Earplugs

This ear plug is lightweight, comfortable and easy-to-use for workers in a wide variety of industrial and commercial applications.

SLC₈₀ 18dB (Class 3)

SLC₈₀ 21dB (Class 3)

Product Number	Abbreviated General Description	Packaging
1270	1270 Corded	100 pairs/box, 5 boxes/case
1271	1271 Cased Corded	50 pairs/box, 5 boxes/case
1290*	1290 Cloth Corded	100 pairs/box, 5 boxes/case
1291*	1291 Cased Cloth Corded	50 pairs/box, 5 boxes/case

*Only available in NZ

Available with Cord Moisture Resistant Reusable Metal Detectable Slow-Recovery Foam No Roll-Down Required

ClearE-A-R[™] 20 Earplugs

The ClearE-A-R 20 has been designed to offer optimum attenuation and is ideally suited in medium noise risk areas without affecting vital communication with your colleagues or customers. The high precision filter controls the flow of sound to maintain a connection with the outside world.

<u>.</u>

Available with Cord	
Moisture Resistant	~
Reusable	
Metal Detectable	
Slow-Recovery Foam	
No Roll-Down Required	

Product Number **Abbreviated General Description** Packaging UF-01-021 ClearE-A-R 20 Earplug Uncorded 1 pair/box, 12 boxes/case

SLC₈₀ 18dB (Class 3)

*Only available via firm order

3M[™] E-A-R[™] Reusable Earplugs

E-A-R[™] Combat Arms[™] 4.1

3M Combat Arms[™] Earplugs – Generation 4.1 meet the demanding hearing protection needs of those serving in the armed forces defense markets. The 3M[™] Combat Arms[™] Earplugs – Generation 4.1 contain a housing assembly featuring a rocker switch. When the tab featuring the 3M logo is pressed, the device is in the Closed Mode and acts as a conventional earplug. The Closed Mode provides protection against all types of noise, and should be the only mode used for steady noise such as aircraft, vehicle, generator and watercraft.

Available with Cord	
Moisture Resistant	~
Reusable	~
Metal Detectable	
Slow-Recovery Foam	
No Roll-Down Required	~

Open/Weapons Fire Mode SLC₈₀ 9dB (Class 1)

Closed/Constant Protection Mode SLC₈₀ 12dB (Class)

Product Number	Abbreviated General Description	Packaging
370-1040	Combat Arms™ Earplug 4.1–Small	500 PR/CS
370-1041	Combat Arms [™] Earplug 4.1–Medium	500 PR/CS
370-1042	Combat Arms [™] Earplug 4.1–Large	500 PR/CS

*Only available via firm order

E-A-R[™] Combat Arms[™] Earplugs Single Ended

If the rocker cover is in Open/Weapons Fire mode, sound travels into the earplug and down the sound channel to the special filter. The filter allows lower-level sounds to pass with limited interruption but high-level impulsive noises are restricted. The more intense the impulse, the more it is limited.

Available with Cord	\checkmark
Moisture Resistant	~
Reusable	\checkmark
Metal Detectable	
Slow-Recovery Foam	
No Roll-Down Required	~

Open/Weapons Fire Mode SLC⁸⁰ 13dB (Class 1) Closed/Constant Protection Mode SLC⁸⁰ 22dB (Class 4)

Product Number	Abbreviated General Description	Packaging
370-1030	CAE Earplug Small	1 pair/box, 50 boxes/case
370-1031	CAE Earplug Regular	1 pair/box, 50 boxes/case
370-1032	CAE Earplug Large	1 pair/box, 50 boxes/case

*Only available via firm order

EAR

Banded Hearing Protectors

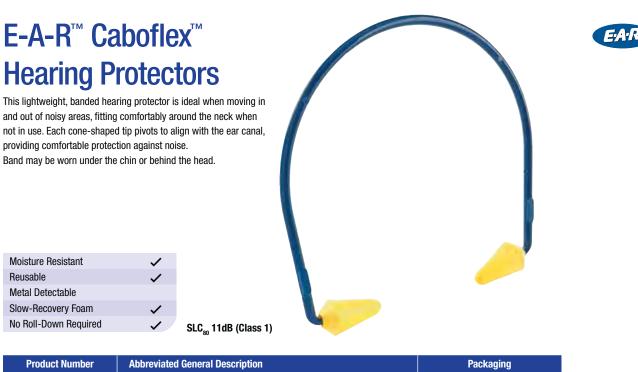
(Con 1)

Banded hearing protectors are an easy-to-use, convenient alternative to insert earplugs and earmuffs. They are quick to put on and take off and may be stored around the neck in between uses, making them ideal for intermittent use. Banded hearing protectors offer simplicity to help ensure your workers are receiving the right level of protection. Most models are available with replacement tips, which make them a very cost-effective option.

3M[™] E-A-R[™] Banded Hearing Protectors

E-A-Rflex[™] Hearing Protectors

A comfortable, effective, lightweight alternative to earmuffs. Ideal for people who fit and remove their hearing protection frequently. Soft tips pivot to help maintain a comfortable, noise-blocking seal. Multi-position wearing with conical tips.


earmuffs. protection ortable, conical tips.		EAR
		Replacement Tips Available

ReusableMetal Detectable (350-3101 only)Slow-Recovery FoamNo Roll-Down Required

Moisture Resistant

SLC₈₀ 15dB (Class 2)

Product Number	Abbreviated General Description	Packaging
350-3001	E-A-Rflex Hearing Protector	1 band/bag, 10 bags/case
350-3002	E-A-Rflex Replacement Tips	50 pairs/box, 10 boxes/case
350-3101	E-A-Rflex Metal Detectable Hearing Protector	1 band/bag, 10 bags/case

320-2001 Caboflex Model 600 Hearing Protector 1 band/bag, 10 bags/case

E-A-Rcaps[™] Hearing Protectors

One of the lightest banded hearing protectors on the market, E-A-Rcaps banded hearing protectors feature comfortable foam caps on a flexible band to block the ear canal opening. Ideal for visitors to a noisy facility or people who need hearing protection for short periods of time.

Moisture Resistant		
Reusable	~	
Metal Detectable		
Slow-Recovery Foam	~	
No Roll-Down Required	~	SLC。
		00

Product Number	Abbreviated General Description	Packaging
321-2101	E-A-Rcaps Model 200 Hearing Protector	1 band/bag, 10 bags/case

E-A-R[™] Swerve[™] Banded Hearing Protector

EAR

Replacement Tips Available

band design with the effectiveness of E-A-R foam earplugs. The ergonomic design minimises
interference, and the neckband shape helps eliminate contact with collars and headgear,
which reduces band sound transmission. The band slides forward and backward for
custom neck and ear positioning. It is also supplied with a removable cotton lanyard.

Comfort meets performance as the unique Swerve banded earplugs incorporate a cutting-edge

Moisture Resistant	
Reusable	~
Metal Detectable	
Slow-Recovery Foam	~
No Roll-Down Required	

Comfort Pods: SLC₈₀ 23dB (Class 4) Flex 28 Tips: SLC₈₀ 20dB (Class 3)

Product Number	Abbreviated General Description	Packaging
322-2000	Swerve Banded Hearing Protector	1 band/bag, 10 bags/case
322-2001	Replacement Comfort Pod Tips	5 pairs/bag, 10 bags/case
320-1001	E-A-RFlex 28 Replacement Tips	5 pairs/bag, 10 bags/case

3M[™] E-A-R[™] Banded Hearing Protectors

3M[™] 1310 Hearing Protector

3M Banded Earplugs are easy to use, convenient and extremely comfortable. They are quick to put on and off and to store around the neck when not required, making them ideal for intermittent use. Banded earplugs offer simplicity to help your workers receive protection from hazardous noise. The flexible band for allows for easy manipulation and constant low pressure in the ear. The soft round foam ear plugs also reduce pressure and provide a comfortable seal.

Moisture Resistant	~
Reusable	\checkmark
Metal Detectable	
Slow-Recovery Foam	~
No Roll-Down Required	~

 ${\rm SLC}_{_{\rm 80}}$ 18 dB (Class 3) - when worn under chin

 SLC_{a0} 13dB (Class 1)- when worn behind the neck.

Product Number	Abbreviated General Description	Packaging
1310	1310 Banded Hearing protector	10 bands/box, 5 boxes/case
1311	1311 Replacement Tips	20 pairs/box, 5 boxes/case

*Note: Wearing banded hearing protectors in ways other than as per the fitting instructions can lead to different attenuation results.

Passive Earmuffs

Earmuffs are a popular choice in hearing protection due to their ease of use and consistent fit. Available in headband, neckband, hard hat attached, and folding models, earmuffs help meet hearing protection needs in many common applications.

Peltor[™] Extreme Performance **Earmuffs - H10 Series**

The H10 Series is a high performance hearing protector and has been developed for use in extremely noisy environments. The protection is based on a technology with a double casing minimising resonance in the casing giving optimum high-frequency attenuation. An acoustic connection between the inner and outer casings provides maximum low-frequency attenuation. The sealing rings are broad and filled with soft plastic foam for the best fit and low contact pressure.

Electrically Insulated (Dielectric)	~
Neckband	~
Folding Headband	
Hard Hat Attached	~
Hi-Viz	~
Liquid/Foam-Filled Cushions	~
Hygiene Kit	\checkmark

Product Number	Abbreviated General Description	Packaging
H10A	Over-the-Head Dual Cup Earmuff SLC ₈₀ 33dB (Class 5)	1 pair/box, 10 boxes/case
H10A HV	Hi-Viz Over-the-Head Green Dual Cup Earmuff SLC $_{\rm 80}$ 33dB (Class 5)	1 pair/box, 10 boxes/case
H10B	Behind-the-Head Dual Cup Earmuff SLC ₈₀ 34dB (Class 5)	1 pair/box, 10 boxes/case
H10P3E	Hard Hat Attached Dual Cup Earmuff SLC ₈₀ 33dB (Class 5)	1 pair/box, 10 boxes/case
H10P3G	Hard Hat Attached Dual Cup Earmuff SLC ₈₀ 33dB (Class 5)	1 pair/box, 10 boxes/case
H10P3M*	Hard Hat Attached Dual Cup Earmuff SLC ₈₀ 33dB (Class 5)	1 pair/box, 10 boxes/case
H10P3E-01*	Hard Hat Attached Dual Cup Electrically Insulated (Dielectric) Earmuff ${\rm SLC}_{\rm so}$ 33dB (Class 5)	1 pair/box, 10 boxes/case
HY54	Hygiene Kit 1 Pr Cushions/1 Pr Foam Inserts for H10 Series	1 kit/bag, 20 bags/case

*Only available in NZ *Firm order only

Peltor[™] Select Performance Earmuffs - H9 Series

The H9 Series offers versatile protection and is very lightweight providing high wearer comfort. It combines a low profile with generous inner depth which makes it easy to combine with other equipment, allowing the ear to rest comfortably. It is ideal for use in environments with moderate industrial noise, such as workshops, sheetmetal shops and printing works, but also suitable for outdoors, such as lawn mowing or in connection with hobbies and leisure activities.

Electrically Insulated (Dielectric)	
Neckband	\checkmark
Folding Headband	
Hard Hat Attached	~
Hi-Viz	
Liquid/Foam-Filled Cushions	~
Hygiene Kit	~

Product Number	Abbreviated General Description	Packaging
H9A	Over-the-Head Yellow Earmuff SLC ₈₀ 24dB (Class 4)	1 pair/box, 10 boxes/case
H9B	Behind-the-head Yellow Earmuff SLC ₈₀ 24dB (Class 4)	1 pair/box, 10 boxes/case
H9P3E	Hard Hat Attached Yellow Earmuff SLC ₈₀ 24dB (Class 4)	1 pair/box, 10 boxes/case
H9P3G	Hard Hat Attached Yellow Earmuff SLC ₈₀ 24dB (Class 4)	1 pair/box, 10 boxes/case
H9P3M*	Hard Hat Attached Yellow Earmuff SLC ₈₀ 24dB (Class 4)	1 pair/box, 10 boxes/case
HY5	Replacement Hygiene Kit 1 Pr Cushions/1 Pr Foam Inserts for H6 and H9 Series	1 kit/bag, 20 bags/case

PELTOR

Peltor[™] Deluxe Earmuffs - H7 Series

The H7 Series has been developed for demanding noisy environments with increased low frequency attenuation. The sealing rings are filled with a unique combination of liquid and foam. The result is an optimum seal with low contact pressure, which provides agreeable comfort even during long-term use. The H7 Series is a suitable choice for typical environments with substantial industrial noise or construction machinery, airports and agricultural work.

Electrically Insulated (Dielectric)	
Neckband	~
Folding Headband	~
Hard Hat Attached	~
Hi-Viz	~
Liquid/Foam-Filled Cushions	~
Hygiene Kit	~

PELTOR

Product Number	Abbreviated General Description	Packaging
H7A	Over-the-Head Green Earmuff SLC ₈₀ 30dB (Class 5)	1 pair/box, 10 boxes/case
H7B	Behind-the-Head Green Earmuff SLC ₈₀ 28dB (Class 5)	1 pair/box, 10 boxes/case
H7P3E	Hard Hat Attached Green Earmuff SLC ₈₀ 30dB (Class 5)	1 pair/box, 10 boxes/case
H7P3G	Hard Hat Attached Green Earmuff SLC ₈₀ 30dB (Class 5)	1 pair/box, 10 boxes/case
H7P3M*	Hard Hat Attached Green Earmuff SLC ₈₀ 30dB (Class 5)	1 pair/box, 10 boxes/case
H7F	Folding Green Earmuff SLC ₈₀ 31dB (Class 5)	1 pair/box, 10 boxes/case
H7F HV	HV Hi Vis Folding Green Earmuff SLC ₈₀ 31dB (Class 5)	1 pair/box, 10 boxes/case
HY3	Replacement Hygiene Kit for H7 Type Hearing Protectors	1 kit/bag, 20 bags/case

*Only available in NZ

Peltor[™] Low Profile Earmuffs -H6 Series

The H6 Series is specially engineered for high comfort and continuous wear. They provide effective noise protection for daily exposures up to 104dB. The foam sealing rings provide a quality noise seal with low pressure for all day wearer comfort.

Electrically Insulated (Dielectric)	
Neckband	~
Folding Headband	~
Hard Hat Attached	~
Hi-Viz	
Liquid/Foam-Filled Cushions	~
Hygiene Kit	~

Product Number	Abbreviated General Description	Packaging
H6A	Low Profile Over-the-Head Beige Earmuff SLC ₈₀ 22dB (Class 4)	1 pair/box, 10 boxes/case
H6B	Low Profile Behind-the-Head Beige Earmuff SLC ₈₀ 22dB (Class 4)	1 pair/box, 10 boxes/case
H6F	Low Profile Folding Beige Earmuff SLC ₈₀ 23dB (Class 4)	1 pair/box, 10 boxes/case
H6P3G	Low Profile Hard Hat Attached Beige Earmuff $SLC_{_{80}}$ 22dB (Class 4)	1 pair/box, 10 boxes/case
HY5	Replacement Hygiene Kit 1 Pr Cushions/1 Pr Foam Inserts for H6, H9 and H31 Type Hearing Protectors	1 kit/bag, 20 bags/case

PELTOR

Peltor[™] H31 Earmuff

This earmuff is ultra light and features orange cups for added visibility. This versatile, over-the-head earmuff has a stainless steel headband that resists bending and warping. The earcups provide optimum comfort with pivot points that tilt and liquid/foam-filled earmuff cushions.

Electrically Insulated (Dielectric)	
Neckband	
Folding Headband	
Hard Hat Attached	~
Hi-Viz	~
Liquid/Foam-Filled Cushions	~
Hygiene Kit	~

ELTOP

56

PELTOR

PELTOR

Product Number	Abbreviated General Description	Packaging
H31P3E	Deluxe Hard Hat Attached Orange Earmuff SLC ₈₀ 28dB (Class 5)	1 pair/box, 10 boxes/case
H31P3AF	M-Series Hard Hat Attached Orange Earmuff M-100: ${\rm SLC}_{_{80}}$ 20dB (Class 3)/M-300: ${\rm SLC}_{_{80}}$ 25dB (Class 4) 6 EA	1 pair/box, 6 boxes/case
H31P3BB	H31P3BB Airstream Series Hard Hat Attached Orange Earmuff ${\rm SLC}_{_{\rm B0}}$ 23dB (Class 4)	1 pair/box, 1 box/case
HY3	Replacement Hygiene Kit for H31 Type Hearing Protectors	1 kit/bag, 20 bags/case

Peltor[™] PTL[™] Earmuff

Push-to-Listen earmuffs allow workers to listen safely without removing their earmuffs. Listeners simply press the button to boost the volume of conversation and other sounds for 30 seconds. Ideal for workers in environments where intermittent ambient listening is required.

~
~
~

Product Number	Abbreviated General Description	Packaging
H7A-PTL*	PTL Over-the-Head Earmuff SLC ₈₀ 27dB (Class 5)	1 pair/box, 10 boxes/case
H7P3E-PTL*	PTL Hard Hat Attached Earmuff SLC ₈₀ 27dB (Class 5)	1 pair/box, 10 boxes/case
HY3	Replacement Hygiene Kit for H7 Type Hearing Protectors	1 kit/bag, 20 bags/case

*Firm order only

PELTOR

Peltor[™] Food Industry Earmuff H9A-02

Engineered to meet the stringent hygiene demands of the food industry, these comfortable lightweight earmuffs feature a smooth, non-porous headband designed to help prevent food particle accumulation. The lightweight ear cups have washable, replaceable inserts designed to help reduce moisture absorption.

Illy Insulated (Dielectric) Ind Headband t Attached
--

Product Number	Abbreviated General Description	Packaging
H9A-02	H9A-02 Food Industry Earmuff SLC ₈₀ 26dB (Class 5)	1 pair/box, 10 boxes/case
HY55	H9A-02 Earmuff Hygiene Replacement Kit (cushions and inserts)	1 kit/bag, 10 bags/case

Peltor[™] Welding Earmuff H505B

The 3M[™] Peltor[™] Welding Helmet Earmuff H505B features a low-profile design that fits comfortably under most welding helmets, as well as a semi-soft cup surface that minimises scratch sound transmission. With a two-point suspension for balanced pressure distribution, this advanced earmuff delivers the comfortable protection that professionals need in a wide range of welding environments.

Electrically Insulated (Dielectric)	
Neckband	~
Folding Headband	
Hard Hat Attached	
Hi-Viz	
Liquid/Foam-Filled Cushions	~
Hygiene Kit	~

Product Number	Abbreviated General Description	Packaging
H505B	Welding Earmuff SLC ₈₀ 22dB (Class 4)	1 pair/box, 10 boxes/case
HY505	Hygiene Kit	1 kit/bag, 10 bags/case

Peltor[™] Bull's Eye Earmuff

This passive range of foldable earmuffs are available in three different colours, military green, black and red. These hearing protectors are designed to provide a moderate to high level of protection that meet the needs of sport shooters and hunters. The bevelled cup increased compatibility with hunting/ shooting weapons.

Electrically Insulated (Dielectric)	
Neckband	
Folding Headband	~
Hard Hat Attached	
Hi-Viz	
Liquid/Foam-Filled Cushions	~
Hygiene Kit	

SLC₈₀ 26dB (Class 5)

1 nair/how 20 howas/asaa
1 pair/box, 20 boxes/case
1 pair/box, 20 boxes/case
1 pair/box, 20 boxes/case

Peltor[™] Premium Earmuff X4 Series

The X-Series earmuffs are 3M's latest advancement in hearing conservation. New technologies in comfort, design and protection all come together in this groundbreaking earmuff line. The X4A utilises a newly designed spacer, specially formulated foam liners and innovative ear cushions to help improve attenuation. This lightweight, lower-profile earmuff helps with compatibility with other personal protective equipment and is designed for protection against moderate-to-high level industrial noise and other loud sounds. It features an electrically insulated wire headband, often referred to as "dielectric".

Electrically Insulated (Dielectric)	~
Neckband	
Folding Headband	
Hard Hat Attached	~
Hi-Viz	
Liquid/Foam-Filled Cushions	~
Hygiene Kit	~

Product Number	Abbreviated General Description	Packaging
X4A	X4A Over The Head Green Premium Earmuff SLC ₈₀ 31dB (Class 5)	1 pair/box, 10 boxes/case
X4P3E	X4P3E Hard Hat Attached Green Premium Earmuff SLC ₈₀ 27dB (Class 5)	1 pair/box, 10 boxes/case
HYX4	X4 Hygiene Kit	1 kit/bag, 20 bags/case

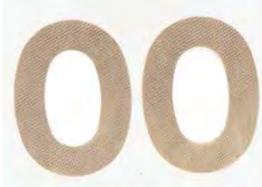
PELTOR

Peltor[™] Premium Earmuff X5 Series

PELTOR

The X5A earmuffs offer 3M's highest SLC (35 dB) which makes them ideal for very high noise situations. The high attenuation delivered by X5A earmuffs is possible as a result of a combination of advanced technologies including: newly designed spacers, specially formulated earcup liners and innovative foam contained in the cushions. It also features an electrically insulated wire headband, often referred to as "dielectric".

Electrically Insulated (Dielectric)	~
Neckband	
Folding Headband	
Hard Hat Attached	~
Hi-Viz	
Liquid/Foam-Filled Cushions	~
Hygiene Kit	~
	•



Product Number	Abbreviated General Description	Packaging
X5A	X5A Over The Head Black Premium Earmuff $SLC_{_{80}}$ 35dB (Class 5)	1 pair/box, 10 boxes/case
X5P3E	X5P3E Hard Hat Attached Black Premium Earmuff SLC ₈₀ 31dB (Class 5)	1 pair/box, 10 boxes/case
HYX5	X5 Hygiene Kit	1 kit/bag, 20 bags/case

Peltor[™] Hygiene Tear Away Pads

The disposable hygiene pads are an easy way to improve hygiene and comfort. Effective and practical use in dirty and hot environments to keep cushions hygienically clean. Also useful when several persons are using the same hearing protector i.e. visitors' earmuffs.

Product Number	Abbreviated General Description	Packaging
HY100A	Hygiene Tear Away Pads	100 pairs/box, 10 boxes/case

Peltor[™] Kids Earmuff H510AK

PELTOR

Peltor Kid hearing protectors can attenuate harmful noise levels without completely shutting out other ambient sounds. These muffs are recommended for use by children up to age seven. Peltor Kid comes in two characteristic colours – neon pink and neon green – for high visibility and fun.

Electrically Insulated (Dielectric)	
Neckband	
Folding Headband	
Hard Hat Attached	
Hi-Viz	
Liquid/Foam-Filled Cushions	~
Hygiene Kit	

SNR 27 dB

Product Number	Abbreviated General Description	Packaging
H510AK-442-GB	Kids Neon Green Earmuff	1 pair/box, 6 boxes/case
H510AK-442-RE	Kids Neon Fink Earmuff	1 pair/box, 6 boxes/case

3M[™] Earmuff 1426

An entry level earmuff with high level attenuation. Super economical, the over the head design for use with other PPE.

Electrically Insulated (Dielectric) Neckband Folding Headband Hard Hat Attached Hi-Viz Liquid/Foam-Filled Cushions Hygiene Kit

SLC₈₀ 26dB (Class 5)

Product Number	Abbreviated General Description	Packaging
1426	1426 Economy Earmuff	1 pair/bag, 20 bags/case

3M[™] Earmuff 1436

Designed for moderate to high noise exposure. The versatile 1436 foldable earmuff offers an economical, lightweight yet durable earmuff. The 1436 provides a high degree of comfort to the wearer at an affordable price.

Electrically Insulated (Dielectric)	~
Neckband	
Folding Headband	
Hard Hat Attached	
Hi-Viz	
Liquid/Foam-Filled Cushions	
Hygiene Kit	

SLC₈₀ 27dB (Class 5)

Product Number	Abbreviated General Description	Packaging
1436	1436 Foldable Economy Earmuff	1 pair/bag, 20 bags/case

*Peltor Helmet Attachments Guide

3M Petror hard hat attachments were tested in combination with the following industrial helmets and may give different levels of protection if fitted to different helmets: 3M G22 MSA V-Guard.

Testing Made Easy

EARfil

The 3M[™] E-A-Rfit[™] Validation System measures the level of employee hearing protection by generating a personal attenuation rating (PAR) in just 10 seconds per ear. This simple, in-the-field test system can enhance your hearing conservation program by assisting with the selection of appropriate protectors for workers and their environments. It also serves as a tool for training proper insertion techniques. Make E-A-Rfit testing a key part of your comprehensive hearing protection program.

3M[™] Validation Products

3M[™] E-A-Rfit[™] Validation System

E-A-Rfit is a comprehensive fit validation system to test the actual protection workers receive from their hearing protectors. For more information on this service, please contact your 3M Personal Safety Sales Representative. NOTE: If your customers wish to have someone at their company trained to become a certified E-A-Rfit Technician so they can service their own employees, please contact a 3M Personal Safety Sales Representative for more information.

These earplug styles cover fit validation testing for over 80 different 3M earplug products.

Tri-Flange^{*}

Classic[™] Platinum

Express^{*}

1100

E-A-R[™] Push Ins[™] w/Grip Rings Tri-Flange™

Product Number	Abbreviated General Description	Packaging
393-1100	E-A-Rfit Kit – Validation System includes the Software, Speaker and Impact Resistant Carrying Case	1 kit/case
393-2000-50	E-A-Rsoft Yellow Neons Probed Test Plugs	10 pairs/bag, 5 bags/case
393-2001-50	UltraFit Probed Test Plugs	10 pairs/bag, 5 bags/case
393-2002-50	Push-Ins Probed Test Plugs	10 pairs/bag, 5 bags/case
393-2003-50	Classic Probed Test Plugs	10 pairs/bag, 5 bags/case
393-2004-50	E-A-Rsoft FX Probed Test Plugs	10 pairs/bag, 5 bags/case
393-2006-50	TaperFit Probed Test Plugs	10 pairs/bag, 5 bags/case
393-2007-50	Classic Platinum Probed Test Plugs	10 pairs/bag, 5 bags/case
393-2008-50	Express Probed Test Plugs	10 pairs/bag, 5 bags/case
393-2010-50	1100 Probed Test Plugs	10 pairs/bag, 5 bags/case
393-2011-50	Tri-Flange Probed Test Plugs	10 pairs/bag, 5 bags/case
393-2012-50	Skull Screws Probed Test Plugs	10 pairs/bag, 5 bags/case
393-2013-50	No Touch Probed Test Plugs	10 pairs/bag, 5 bags/case
393-2014-50	E-A-Rsoft Yellow Neons Large Probed Test Plugs	10 pairs/bag, 5 bags/case
393-2015-50	E-A-R Push Ins with Grip Rings Probed Test Plugs	10 pairs/bag, 5 bags/case
393-3005-2	Peltor X4/X5 Test Probe Kits	1 pair/case

No Roll Down Earplugs

EAR Push-Ins™ wit	n Grip Rir	ngs (Cord	ied & Uno	corded)			
Frequency	125	250	500	1000	2000	4000	8000
Mean Attenuation dB	24.4	24.3	25.7	28.6	33.8	37.0	39.8
Standard Deviation dB	5.9	5.0	6.0	6.5	3.4	5.7	8.8
					SL(C ⁸⁰ : 26dB	Class
(Co	rded)						
Frequency	125	250	500	1000	2000	4000	8000
Mean Attenuation dB	25.4	24.0	24.7	25.9	34.2	36.0	37.0
Standard Deviation dB	9.1	8.2	8.4	7.4	4.8	4.7	5.7
					SL(C ⁸⁰ : 23dB	Class
EAR Express™ (Coi	rded & Un	corded)					
Frequency	125	250	500	1000	2000	4000	800
Mean Attenuation dB	19.3	19.2	19.6	21.4	30.6	32.3	35.4
Standard Deviation dB	8.3	7.6	8.4	5.0	5.3	4.5	5.0
	0.0	1.0	0.1	0.0		C ⁸⁰ : 19dB	
	TM (0				UL.	. 1000	01400
EAR 3M™ No-Touch	•			1000	0000	4000	000
Frequency Mean Attenuation dB	125 25.0	250	500	1000 30.6	2000	4000	800
Standard Deviation dB	25.9	27.3	29.3 8.7	30.6 9.3	34.9	43.3	45.(0 3
Statiuaru Deviation ab	7.1	7.7	8.7	9.3	7.4	8.6 C ⁸⁰ : 25dB	9.3 Class
					SLU	: 250B	Class
EAR 3M™ Skull Scr	ews™ (0	Corded &	Uncorde	d)			
Frequency	125	250	500	1000	2000	4000	800
Mean Attenuation dB	26.7	26.6	28.5	32.5	37.3	40.5	43.4
Standard Deviation dB	8.9	8.8	9.2	7.8	4.6	5.4	8.1
					SLO	C ⁸⁰ : 27dB	Class
EAR 3M™ Pistonz™	' (Corded	& Uncor	ded)				
Frequency	125	250	500	1000	2000	4000	800
Mean Attenuation dB	24.3	24.8	26.5	26.0	31.5	41.2	44.4
Standard Deviation dB	19.6	20.1	21.8	20.3	26.7	35.3	39.0
					SL(C ⁸⁰ : 25dB	Class
isposable Ear	plugs	5					
-							
EAR Taperfit™ 2 Und				1000			
Frequency	125	250	500	1000	2000	4000	800
Mean Attenuation dB	23.6	24.6	28.2	29.7	34.9	44.2	45.3
Standard Deviation dB	6.9	8.8	8.7	7.3		5.2	
					SLO	280: 26dB	Class
EAR Taperfit™ 2 Lrg	Corded						
	405	250	500	1000	2000	4000	800
Frequency	125	200			35.5	46.6	46.9
Frequency Mean Attenuation dB	26.2	26.2	28.2	27.9	00.0	40.0	
			28.2 6.8	27.9 6.2	3.4	40.0 5.5	3.5
Mean Attenuation dB	26.2	26.2			3.4		
Mean Attenuation dB	26.2 5.9	26.2 6.1	6.8		3.4	5.5	
Mean Attenuation dB Standard Deviation dB	26.2 5.9	26.2 6.1	6.8		3.4	5.5	Class
Mean Attenuation dB Standard Deviation dB €AR E-A-Rsoft™ FX	26.2 5.9 (Corded	26.2 6.1 & Uncord	6.8 led)	6.2	3.4 SL(5.5 26dB	Class
Mean Attenuation dB Standard Deviation dB E-A-Rsoft™ FX Frequency	26.2 5.9 (Corded 125	26.2 6.1 & Uncord 250	6.8 led) 500	6.2 1000	3.4 SLC 2000	5.5 2608 2608 4000	
Mean Attenuation dB Standard Deviation dB E-A-Rsoft™ FX Frequency Mean Attenuation dB	26.2 5.9 (Corded 125 28.5	26.2 6.1 & Uncord 250 27.3	6.8 led) 500 28.3	6.2 1000 28.5	3.4 SLC 2000 36.0 4.8	5.5 26dB 4000 45.2	Class 800 46.7 6.4
Mean Attenuation dB Standard Deviation dB E-A-Rsoft™ FX Frequency Mean Attenuation dB Standard Deviation dB	26.2 5.9 (Corded 125 28.5 6.5	26.2 6.1 & Uncord 250 27.3	6.8 led) 500 28.3	6.2 1000 28.5	3.4 SLC 2000 36.0 4.8	5.5 2°0: 26dB 4000 45.2 6.5	Class 800 46.7 6.4
Mean Attenuation dB Standard Deviation dB E-A-Rsoft™ FX Frequency Mean Attenuation dB Standard Deviation dB Classic™ Unco	26.2 5.9 (Corded 125 28.5 6.5	26.2 6.1 & Uncord 250 27.3 5.3	6.8 led) 500 28.3 6.7	6.2 1000 28.5 6.8	3.4 SLC 2000 36.0 4.8 SLC	5.5 26dB 4000 45.2 6.5 280: 26dB	Class 800 46.7 6.4 Class
Mean Attenuation dB Standard Deviation dB E-A-Rsoft™ FX Frequency Mean Attenuation dB Standard Deviation dB EAR Classic™ Uncon Frequency	26.2 5.9 (Corded 125 28.5 6.5 rded 125	26.2 6.1 & Uncorro 250 27.3 5.3	6.8 led) 28.3 6.7	6.2 1000 28.5 6.8 1000	3.4 SLC 2000 36.0 4.8 SLC 2000	5.5 26dB 4000 45.2 6.5 200: 26dB 4000	Class 800 46.7 6.4 Class 800
Mean Attenuation dB Standard Deviation dB E-A-Rsoft™ FX Frequency Mean Attenuation dB Standard Deviation dB Classic™ Unco	26.2 5.9 (Corded 125 28.5 6.5	26.2 6.1 & Uncord 250 27.3 5.3	6.8 led) 500 28.3 6.7	6.2 1000 28.5 6.8	3.4 SLC 2000 36.0 4.8 SLC	5.5 26dB 4000 45.2 6.5 280: 26dB	Class 800 46.7 6.4

(Cord Classic™ (Cord	ed)						
Frequency	125	250	500	1000	2000	4000	8000
Mean Attenuation dB	19.0	19.0	25.1	23.9	30.7	37.0	39.3
Standard Deviation dB	6.7	5.1	7.9	7.5	6.9	5.5	9.0
					SL(C ⁸⁰ : 21dB	Class 3
EAR Classic™ Platin	um						
Frequency	125	250	500	1000	2000	4000	8000
Mean Attenuation dB	19.8	20.5	27.0	28.5	30.4	38.1	40.9
Standard Deviation dB	6.3	6.6	8.8	7.9	6.6	5.5	5.6
					SLO	C ⁸⁰ : 23dB	Class 4
€AR Classic™ Supe	rfit™30	(Uncorde	ed)				
Frequency	125	250	500	1000	2000	4000	8000
Mean Attenuation dB	21.7	22.9	25.2	25.2	31.9	40.6	39.4
Standard Deviation dB	7.8	7.3	7.8	6.5	4.8	5.5	8.9
					SL(C ⁸⁰ : 23dB	Class 4
(EAR) Classic™ Super	fit™30 (Corded)					
Frequency	125	250	500	1000	2000	4000	8000
Mean Attenuation dB	19.4	21.2	23.6	23.6	30.9	39.4	40.3
Standard Deviation dB	6.9	5.5	5.6	5.7	4.8	4.9	8.5
					SL(C ⁸⁰ : 22dB	Class 4
(EAR) E-A-Rsoft™ Su	nerfit™	(Uncorde	ed)				
Frequency	125	250	500	1000	2000	4000	8000
Mean Attenuation dB	25.9	25.9	28.1	28.1	33.8	46.3	46.3
Standard Deviation dB	8.2	8.7	9.8	8.1	5.2	5.4	5.7
					SLO	C ⁸⁰ : 24dB	Class 4
(EAR) E-A-Rsoft™ Su	nerfit™ (Corded)					
Frequency	125	250	500	1000	2000	4000	8000
Mean Attenuation dB	27.3	27.0	28.8	28.0	33.2	46.2	46.6
Standard Deviation dB	8.7	9.5	9.5	8.9	5.8	4.0	4.4
					SLO	C ⁸⁰ : 24dB	Class 4
(EAR) E-A-Rsoft™ Yel	low Neor	ns (Corde	d & liner	orded)			
Frequency	125	250	500	1000	2000	4000	8000
							42.5
	21.9	22.2	24.5	25.7	31.3	42.7	
Mean Attenuation dB	21.9 8.1	22.2 7.4	24.5 7.7	25.7 6.2	31.3 4.8	42.7 5.5	7.9
Mean Attenuation dB					4.8		7.9
Mean Attenuation dB Standard Deviation dB	8.1	7.4	7.7	6.2	4.8 SL(5.5	7.9
Mean Attenuation dB Standard Deviation dB €AR E-A-Rsoft™ Yello	8.1	7.4 Blast (Co	7.7 orded & U	6.2	4.8 SL(5.5 ²⁸⁰ : 23dB	7.9 Class 4
Mean Attenuation dB Standard Deviation dB EAR E-A-Rsoft™ Yello Frequency	8.1 w Neon 125	7.4 Blast (Co 250	7.7 orded & U 500	6.2 Incorded	4.8 SL() 2000	5.5 2 ⁸⁰ : 23dB 4000	7.9 Class 4 8000
Mean Attenuation dB Standard Deviation dB E-A-Rsoft™ Yello Frequency Mean Attenuation dB	8.1	7.4 Blast (Co	7.7 orded & U	6.2	4.8 SL(5.5 ²⁸⁰ : 23dB	7.9 Class 4
Mean Attenuation dB Standard Deviation dB E-A-Rsoft™ Yello Frequency Mean Attenuation dB	8.1 w Neon 125 11.1	7.4 Blast (Co 250 13.4	7.7 orded & U 500 20.4	6.2 Incorded 1000 26.0	4.8 SL() 2000 31.7 4.8	5.5 2 ⁸⁰ : 23dB 4000 37.8	7.9 Class 4 8000 36.2 7.9
Mean Attenuation dB Standard Deviation dB E-A-Rsoft™ Yello Frequency Mean Attenuation dB Standard Deviation dB	8.1 w Neon 125 11.1 8.1	7.4 Blast (Co 250 13.4 7.4	7.7 orded & U 500 20.4	6.2 Incorded 1000 26.0	4.8 SL() 2000 31.7 4.8	5.5 2°°: 23dB 4000 37.8 5.5	7.9 Class 4 8000 36.2 7.9
Mean Attenuation dB Standard Deviation dB E-A-Rsoft™ Yello Frequency Mean Attenuation dB Standard Deviation dB E-A-Rsoft™ Me	8.1 w Neon 125 11.1 8.1 tal Detect	7.4 Blast (Co 250 13.4 7.4	7.7 orded & U 500 20.4 7.7	6.2 Incorded 1000 26.0 6.2	4.8 SLC 2000 31.7 4.8 SLC	5.5 23dB 4000 37.8 5.5 2 ⁸⁰ : 23dB	7.9 Class 4 8000 36.2 7.9 Class 4
Mean Attenuation dB Standard Deviation dB E-A-Rsoft™ Yello Frequency Mean Attenuation dB Standard Deviation dB E-A-Rsoft™ Me Frequency	8.1 w Neon 125 11.1 8.1 tal Detec 125	7.4 Blast (Co 250 13.4 7.4 ttable 250	7.7 orded & U 500 20.4 7.7	6.2 Incorded 1000 26.0 6.2	4.8 SL() 2000 31.7 4.8 SL(2000	5.5 23dB 4000 37.8 5.5 2 ³⁰ : 23dB 4000	7.9 Class 4 8000 36.2 7.9
Mean Attenuation dB Standard Deviation dB E-A-Rsoft™ Yello Frequency Mean Attenuation dB Standard Deviation dB E-A-Rsoft™ Me Frequency Mean Attenuation dB	8.1 w Neon 125 11.1 8.1 tal Detect 125 21.9	7.4 Blast (Co 250 13.4 7.4 table 250 22.2	7.7 orded & U 500 20.4 7.7 500 24.5	6.2 Incorded 1000 26.0 6.2 1000 25.7	4.8 SL() 31.7 4.8 SL() 2000 31.3	5.5 23dB 4000 37.8 5.5 2%: 23dB 4000 42.7	7.9 Class 4 8000 36.2 7.9 Class 4 8000 42.5
Mean Attenuation dB Standard Deviation dB E-A-Rsoft™ Yello Frequency Mean Attenuation dB Standard Deviation dB E-A-Rsoft™ Me Frequency Mean Attenuation dB	8.1 w Neon 125 11.1 8.1 tal Detec 125	7.4 Blast (Co 250 13.4 7.4 ttable 250	7.7 orded & U 500 20.4 7.7	6.2 Incorded 1000 26.0 6.2	4.8 SLC 31.7 4.8 SLC 31.3 4.8	5.5 2308: 23dB 4000 37.8 5.5 23dB 4000 42.7 5.5	7.9 Class 4 8000 36.2 7.9 Class 4 8000 42.5 7.9
Mean Attenuation dB Standard Deviation dB E-A-Rsoft™ Yello Frequency Mean Attenuation dB Standard Deviation dB E-A-Rsoft™ Me Frequency Mean Attenuation dB Standard Deviation dB	8.1 w Neon 125 11.1 8.1 tal Detec 21.9 8.1	7.4 Blast (Co 250 13.4 7.4 table 250 22.2 7.4	7.7 orded & U 500 20.4 7.7 500 24.5 7.7	6.2 Incorded 1000 26.0 6.2 1000 25.7	4.8 SLO 31.7 4.8 SLO 31.3 4.8	5.5 23dB 4000 37.8 5.5 2%: 23dB 4000 42.7	7.9 Class 4 8000 36.2 7.9 Class 4 8000 42.5 7.9
Mean Attenuation dB Standard Deviation dB E-A-Rsoft™ Yello Frequency Mean Attenuation dB Standard Deviation dB E-A-Rsoft™ Me Frequency Mean Attenuation dB Standard Deviation dB Standard Deviation dB	8.1 w Neon 125 11.1 8.1 tal Deteo 125 21.9 8.1 Earplugs	7.4 Blast (Co 250 13.4 7.4 table 250 22.2 7.4 \$1120/11	7.7 orded & U 500 20.4 7.7 500 24.5 7.7 30	6.2 Incorded 1000 26.0 6.2 1000 25.7 6.2	4.8 SLC 31.7 4.8 SLC 2000 31.3 4.8 SLC	5.5 4000 37.8 5.5 23dB 4000 42.7 5.5 5.5 23dB	7.9 Class 4 8000 36.2 7.9 Class 4 8000 42.5 7.9 Class 4
Mean Attenuation dB Standard Deviation dB E-A-Rsoft™ Yello Frequency Mean Attenuation dB Standard Deviation dB E-A-Rsoft™ Me Frequency Mean Attenuation dB Standard Deviation dB Standard Deviation dB Standard Deviation dB EAR 3M™ Disposable Frequency Mean Attenuation dB	8.1 w Neon 125 11.1 8.1 tal Detec 21.9 8.1	7.4 Blast (Co 250 13.4 7.4 table 250 22.2 7.4	7.7 orded & U 500 20.4 7.7 500 24.5 7.7	6.2 Incorded 1000 26.0 6.2 1000 25.7	4.8 SLO 31.7 4.8 SLO 31.3 4.8	5.5 2308: 23dB 4000 37.8 5.5 23dB 4000 42.7 5.5	7.9 Class 4 8000 36.2 7.9 Class 4 8000 42.5 7.9

CARP 3M™ Disposable Earplugs 1100/1110

Frequency	125	250	500	1000	2000	4000	8000
Mean Attenuation dB	20.3	20.6	23.2	26.5	32.3	37.0	41.1
Standard Deviation dB	8.5	6.9	9.3	9.3	7.1	7.1	6.0
					SLO	280: 21dB	Class 3

Disposable Earplugs (continued)

<i>€AR</i> 3M™ Nitro™ (U	ncorded)								
Frequency	125	250	500	1000	2000	4000	8000			
Mean Attenuation dB	24.9	25.2	27.6	28.7	34.4	43.1	43.5			
Standard Deviation dB	5.3	5.9	6.9	5.8	5.8	8.7	10.0			
		SLC ⁸⁰ : 26dB Class 5								
CONTRACT (Corded)										
Frequency	125	250	500	1000	2000	4000	8000			
Mean Attenuation dB	26.2	27.2	29.8	31.3	35.5	45.8	46.5			
Standard Deviation dB	7.1	7.4	8.3	7.8	6.0	5.7	5.4			
					SLO	C ⁸⁰ : 27dB	Class 5			
<i>EAR</i> 3M™ Solar™										
Frequency	125	250	500	1000	2000	4000	8000			
Mean Attenuation dB	26.2	27.2	29.8	31.3	35.5	45.8	46.5			
Standard Deviation dB	7.1	7.4	8.3	7.8	6.0	5.7	5.4			
					SLO	280: 27dB	Class 5			

Reusable Earplugs

<i>EAR</i> Ultrafit™ 27 (C	orded &	Uncordeo	i)								
Frequency	125	250	500	1000	2000	4000	8000				
Mean Attenuation dB	23.3	22.6	24.2	28.0	33.6	35.0	41.5				
Standard Deviation dB	7.4	7.5	8.0	8.3	8.2	10.4	9.4				
					SLO	280: 22dB	Class 4				
<i>€AR</i> Ultrafit™ (Corde	ed & Unc	orded) &	Metal De	etectable							
Frequency	125	250	500	1000	2000	4000	8000				
Mean Attenuation dB	19.1	18.9	21.2	20.5	28.9	32.1	36.3				
Standard Deviation dB	8.1	8.1	9.3	5.7	6.8	10.6	11.0				
	SLC ⁸⁰ 18dB Class										
EAR ClearEAR™											
Frequency	125	250	500	1000	2000	4000	8000				
Mean Attenuation dB	12.0	12.2	17.3	21.4	28.9	31.8	33.9				
Standard Deviation dB	5.3	4.8	5.9	6.1	8.0	9.2	7.7				
					SLO	C ⁸⁰ : 18dB	Class 3				
Combat Arms S	inale Fn	ded (One	n)								
Frequency	125	250	500	1000	2000	4000	8000				
Mean Attenuation dB	3.9	5.0	10.3	16.3	24.2	22.3	26.0				
Standard Deviation dB	3.3	3.6	4.3	3.4	4.3	4.7	6.0				
	0.0	0.0		011		2 ⁸⁰ : 13dB					
					010		onabo i				
Combat Arms S	Ū	•	,	4000	0000	4000	0000				
Frequency	125	250	500	1000	2000	4000	8000				
Mean Attenuation dB	21.4	21.9	23.0	23.2	28.9	30.7	24.5				
Standard Deviation dB	4.8	4.2	5.5	4.1	3.8	6.3	7.4				
					01.0	280. 00 JD					
					SLO	280: 22dB					
EAR Combat Arms D	ouble En	ded (Lev	el Depen	dent)	SLO	22dB					
Combat Arms D Frequency	ouble En 125	ded (Lev 250	el Depen 500	dent) 1000	SL(2000	22dB 4000					
							Class 4				
Frequency	125	250	500	1000	2000	4000	Class 4 8000				
Frequency Mean Attenuation dB	125 5.3	250 5.7	500 8.6	1000 15.4	2000 23.6 6.3	4000 20.6	Class 4 8000 19.7 4.7				
Frequency Mean Attenuation dB	125 5.3 4.8	250 5.7 4.1	500 8.6 4.4	1000 15.4 5.0	2000 23.6 6.3	4000 20.6 5.6	Class 4 8000 19.7 4.7				
Frequency Mean Attenuation dB Standard Deviation dB	125 5.3 4.8	250 5.7 4.1	500 8.6 4.4	1000 15.4 5.0	2000 23.6 6.3	4000 20.6 5.6	Class 4 8000 19.7 4.7				

 Standard Deviation dB
 8.0
 8.8
 9.9
 9.1
 7.6
 11.3
 10.9

SLC⁸⁰: 17dB Class 2

Reusable Earplugs (continued)

CAR 3M™ Reusable Earplugs 1270										
Frequency	125	250	500	1000	2000	4000	8000			
Mean Attenuation dB	21.9	22.5	24.1	23.0	27.0	27.3	39.2			
Standard Deviation dB	8.3	7.7	9.6	8.2	5.7	8.0	9.9			
					SL	C ⁸⁰ : 18dB	Class 3			

Image: SM™ Reusable Earplugs 1271

Frequency	125	250	500	1000	2000	4000	8000
Mean Attenuation dB	21.9	22.5	24.1	23.0	27.0	27.3	39.2
Standard Deviation dB	8.3	7.7	9.6	8.2	5.7	8.0	9.9
					SLC	80: 18dB	Class 3

EAR 3M™ Tri-Flange™ (Corded & Uncorded)

Frequency	125	250	500	1000	2000	4000	8000
Mean Attenuation dB	22.5	22.0	22.9	26.4	30.6	33.3	36.7
Standard Deviation dB	9.5	10.2	9.5	9.3	8.0	11.7	10.5
					SLO	C ⁸⁰ : 19dB	Class 3

€AR 3M™ Reusable Earplugs 1290/1291

Frequency	125	250	500	1000	2000	4000	8000
Mean Attenuation dB	26.1	26.7	28.2	24.9	29.2	27.3	38.4
Standard Deviation dB	7.5	8.3	6.6	7.5	6.6	7.0	8.6
					SLO	C ⁸⁰ : 21dB	Class 3

4 Banded Earplugs

EAB Swerve™ with I	FLEX™ 2	8 Tips					
Frequency	125	250	500	1000	2000	4000	8000
Mean Attenuation dB	24.7	24.6	21.7	23.5	31.8	36.0	36.2
Standard Deviation dB	10.0	10.1	7.0	7.5	6.7	7.2	8.9
					SLC	C ⁸⁰ : 20dB	Class 3
EAR Swerve™ with	Comfort	Pods					
Frequency	125	250	500	1000	2000	4000	8000
Mean Attenuation dB	25.6	23.5	21.4	23.7	33.5	37.4	39.7
Standard Deviation dB	8.2	8.3	5.9	4.3	4.6	7.0	6.9
					SLO	C ⁸⁰ : 23dB	Class 4
EAR E-A-Rflex™ Foa	m Tins						
Frequency	125	250	500	1000	2000	4000	8000
Mean Attenuation dB	14.7	12.8	17.0	19.4	27.2	33.1	32.6
Standard Deviation dB	11.5	8.7	7.5	7.9	8.3	6.7	13.1
					51.0	C ⁸⁰ : 15dB	Class 2
					SL(. IJUD	01a33 Z
EAR E-A-Rflex™ Me	tal Detec	table			3LU	. IJUD	01055 2
EAR E-A-Rflex™ Me	tal Detec 125	table 250	500	1000	2000	4000	8000
			500 19.5	1000 19.3			
Frequency	125	250			2000	4000	8000
Frequency Mean Attenuation dB	125 19.0	250 15.2	19.5	19.3	2000 23.3 8.5	4000 25.2	8000 32.6 8.6
Frequency Mean Attenuation dB Standard Deviation dB	125 19.0	250 15.2	19.5	19.3	2000 23.3 8.5	4000 25.2 8.9	8000 32.6 8.6
Frequency Mean Attenuation dB Standard Deviation dB €AR Caboflex™ 600	125 19.0	250 15.2	19.5	19.3	2000 23.3 8.5	4000 25.2 8.9	8000 32.6 8.6 Class 2
Frequency Mean Attenuation dB Standard Deviation dB	125 19.0 9.6	250 15.2 6.2 250	19.5 7.4	19.3 7.4	2000 23.3 8.5 SLC	4000 25.2 8.9 C ⁸⁰ : 15dB	8000 32.6 8.6
Frequency Mean Attenuation dB Standard Deviation dB €AR Caboflex [™] 600 Frequency	125 19.0 9.6 125	250 15.2 6.2	19.5 7.4 500	19.3 7.4 1000	2000 23.3 8.5 SLC 2000	4000 25.2 8.9 2 ⁸⁰ : 15dB 4000	8000 32.6 8.6 Class 2 8000
Frequency Mean Attenuation dB Standard Deviation dB €AR Caboflex™ 600 Frequency Mean Attenuation dB	125 19.0 9.6 125 9.6	250 15.2 6.2 250 11.2	19.5 7.4 500 13.3	19.3 7.4 1000 17.2	2000 23.3 8.5 SLC 2000 23.1 7.3	4000 25.2 8.9 2%: 15dB 4000 29.3	8000 32.6 8.6 Class 2 8000 29.1 11.1
Frequency Mean Attenuation dB Standard Deviation dB €AR Caboflex™ 600 Frequency Mean Attenuation dB Standard Deviation dB	125 19.0 9.6 125 9.6 9.2	250 15.2 6.2 250 11.2 10.1	19.5 7.4 500 13.3	19.3 7.4 1000 17.2	2000 23.3 8.5 SLC 2000 23.1 7.3	4000 25.2 8.9 2 ⁸⁰ : 15dB 4000 29.3 6.9	8000 32.6 8.6 Class 2 8000 29.1 11.1
Frequency Mean Attenuation dB Standard Deviation dB Caboflex TM 600 Frequency Mean Attenuation dB Standard Deviation dB	125 19.0 9.6 125 9.6 9.2 arplugs	250 15.2 6.2 250 11.2 10.1	19.5 7.4 500 13.3 9.2	19.3 7.4 1000 17.2 7.8	2000 23.3 8.5 SLC 2000 23.1 7.3 SLC	4000 25.2 8.9 2 ⁸⁰ : 15dB 4000 29.3 6.9 2 ⁸⁰ : 11dB	8000 32.6 8.6 Class 2 8000 29.1 11.1 Class 1
Frequency Mean Attenuation dB Standard Deviation dB €AR Caboflex™ 600 Frequency Mean Attenuation dB Standard Deviation dB €AR 3M™ Banded E Frequency	125 19.0 9.6 9.2 9.2 arplugs 7 125	250 15.2 6.2 250 11.2 10.1 1310 250	19.5 7.4 500 13.3 9.2 500	19.3 7.4 1000 17.2 7.8	2000 23.3 8.5 SLC 2000 23.1 7.3 SLC 2000	4000 25.2 8.9 280: 15dB 4000 29.3 6.9 280: 11dB	8000 32.6 8.6 Class 2 8000 29.1 11.1 Class 1 8000
Frequency Mean Attenuation dB Standard Deviation dB Caboflex TM 600 Frequency Mean Attenuation dB Standard Deviation dB	125 19.0 9.6 125 9.6 9.2 arplugs	250 15.2 6.2 250 11.2 10.1	19.5 7.4 500 13.3 9.2	19.3 7.4 1000 17.2 7.8	2000 23.3 8.5 SLC 2000 23.1 7.3 SLC	4000 25.2 8.9 2 ⁸⁰ : 15dB 4000 29.3 6.9 2 ⁸⁰ : 11dB	8000 32.6 8.6 Class 2 8000 29.1 11.1 Class 1

SLC⁸⁰: 18dB Class 3

Earmuffs

PELTOR [®] H10A Head	band & H	li Viz Hea	dband				
Frequency	125	250	500	1000	2000	4000	8000
Mean Attenuation dB	17.9	23.4	35.1	40.6	35.1	41.8	40.4
Standard Deviation dB	3.2	2.6	2.6	4.5	3.5	3.4	3.7
					SLO	2 ⁸⁰ : 33dB	Class 5
PELTOR H10B Neck	band						
Frequency	125	250	500	1000	2000	4000	8000
Mean Attenuation dB	17.0	24.0	35.2	40.1	36.4	41.1	38.6
Standard Deviation dB	2.7	3.4	3.3	3.2	2.9	2.9	3.7
					SLO	280: 34dB	Class 5
PELTOR H10P3E & I	110P3G H	lelmet At	tachmer	ıt			
Frequency	125	250	500	1000	2000	4000	8000
Mean Attenuation dB	17.6	23.5	35.0	40.5	35.0	41.7	41.3
Standard Deviation dB	2.9	3.1	3.9	3.3	2.2	3.1	3.2
					SLC	80: 33dB	C lass 5
PELTOR [®] H7A Headb	and						
Frequency	125	250	500	1000	2000	4000	8000
Mean Attenuation dB	12.6	20.1	32.1	35.8	36.3	39.1	39.8
Standard Deviation dB	2.8	4.1	4.2	4.1	4.7	2.5	4.0
					SLO	280: 30dB	Class 5
PELTOR H7B Neckb	and & Di	-electric	Neckhar	hd			
Frequency	125	250	500	1000	2000	4000	8000
Mean Attenuation dB	10.5	18.9	30.0	34.6	35.7	38.7	39.8
Standard Deviation dB	3.4	3.9	5.3	4.5	6.3	4.4	4.2
					SLO	280: 28dB	Class 5
PELTOR [®] H7F Folding	n Hoadha	nd					
Frequency	125	250	500	1000	2000	4000	8000
Mean Attenuation dB	13.4	20.7	31.9	35.9	37.3	39.0	38.9
Standard Deviation dB	2.7	3.3	3.5	2.5	5.1	2.8	4.5
					SLO	C ⁸⁰ : 31dB	
	7P36 Hol	mat Atta	hmont		SLO	C ⁸⁰ : 31dB	
PELTOR [®] H7P3E & H				1000			Class 5
Frequency	125	250	500	1000	2000	4000	Class 5
Frequency Mean Attenuation dB	125 17.9	250 23.4	500 35.1	40.6	2000 35.1	4000 41.8	Class 5 8000 40.4
Frequency	125	250	500		2000 35.1 3.5	4000 41.8 3.4	Class 5 8000 40.4 3.7
Frequency Mean Attenuation dB Standard Deviation dB	125 17.9 3.2	250 23.4	500 35.1	40.6	2000 35.1 3.5	4000 41.8	Class 5 8000 40.4 3.7
Frequency Mean Attenuation dB Standard Deviation dB	125 17.9 3.2 and	250 23.4 2.6	500 35.1 2.6	40.6 4.5	2000 35.1 3.5 SLC	4000 41.8 3.4 2 ⁸⁰ : 33dB	Class 5 8000 40.4 3.7 Class 5
Frequency Mean Attenuation dB Standard Deviation dB PELTOR [•] H6A Headb Frequency	125 17.9 3.2 and 125	250 23.4 2.6 250	500 35.1 2.6 500	40.6 4.5 1000	2000 35.1 3.5 SLC 2000	4000 41.8 3.4 ²⁸⁰ : 33dB	Class 5 8000 40.4 3.7 Class 5 8000
Frequency Mean Attenuation dB Standard Deviation dB Frequency Mean Attenuation dB	125 17.9 3.2 and 125 9.6	 250 23.4 2.6 250 9.8 	500 35.1 2.6 500 21.1	40.6 4.5 1000 31.0	2000 35.1 3.5 SLC 2000 27.2	4000 41.8 3.4 3.8 3.4 5%: 33dB 4000 31.6	Class 5 8000 40.4 3.7 Class 5 8000 29.7
Frequency Mean Attenuation dB Standard Deviation dB PELTOR H6A Headb Frequency	125 17.9 3.2 and 125	250 23.4 2.6 250	500 35.1 2.6 500	40.6 4.5 1000	2000 35.1 3.5 SLC 2000 27.2 4.1	4000 41.8 3.4 33dB 4000 31.6 2.9	Class 5 8000 40.4 3.7 Class 5 8000 29.7 3.8
Frequency Mean Attenuation dB Standard Deviation dB PELTOR H6A Headb Frequency Mean Attenuation dB Standard Deviation dB	125 17.9 3.2 and 125 9.6 4.2	 250 23.4 2.6 250 9.8 	500 35.1 2.6 500 21.1	40.6 4.5 1000 31.0	2000 35.1 3.5 SLC 2000 27.2 4.1	4000 41.8 3.4 3.8 3.4 5%: 33dB 4000 31.6	Class 5 8000 40.4 3.7 Class 5 8000 29.7 3.8
Frequency Mean Attenuation dB Standard Deviation dB Frequency Mean Attenuation dB Standard Deviation dB	125 17.9 3.2 and 125 9.6 4.2 and	250 23.4 2.6 250 9.8 3.3	500 35.1 2.6 500 21.1 3.6	40.6 4.5 1000 31.0 3.1	2000 35.1 3.5 SLC 2000 27.2 4.1 SLC	4000 41.8 3.4 380: 33dB 4000 31.6 2.9 380: 22dB	Class 5 8000 40.4 3.7 Class 5 8000 29.7 3.8 Class 4
Frequency Mean Attenuation dB Standard Deviation dB Frequency Mean Attenuation dB Standard Deviation dB FRELTOR: H6B Neckb Frequency	125 17.9 3.2 and 125 9.6 4.2 and 125	250 23.4 2.6 250 9.8 3.3	 500 35.1 2.6 500 21.1 3.6 500 	40.6 4.5 1000 31.0 3.1 1000	2000 35.1 3.5 SLC 2000 27.2 4.1 SLC 2000	4000 41.8 3.4 280: 33dB 4000 31.6 2.9 280: 22dB	Class 5 8000 40.4 3.7 Class 5 8000 29.7 3.8 Class 4 8000
Frequency Mean Attenuation dB Standard Deviation dB Frequency Mean Attenuation dB Standard Deviation dB Frequency Frequency Mean Attenuation dB	125 17.9 3.2 and 125 9.6 4.2 and 125 10.1	250 23.4 2.6 9.8 3.3 250 250 10.9	 500 35.1 2.6 500 21.1 3.6 500 20.7 	40.6 4.5 1000 31.0 3.1 1000 30.5	2000 35.1 3.5 SLC 2000 27.2 4.1 SLC 2000 29.6	4000 41.8 3.4 33dB 4000 31.6 2.9 25% 22dB 4000 32.2	Class 5 8000 40.4 3.7 Class 5 8000 29.7 3.8 Class 4 Class 4 8000 30.0
Frequency Mean Attenuation dB Standard Deviation dB Frequency Mean Attenuation dB Standard Deviation dB FRELTOR: H6B Neckb Frequency	125 17.9 3.2 and 125 9.6 4.2 and 125	250 23.4 2.6 250 9.8 3.3	 500 35.1 2.6 500 21.1 3.6 500 	40.6 4.5 1000 31.0 3.1 1000	2000 35.1 3.5 SLC 2000 27.2 4.1 SLC 2000 29.6 4.5	4000 41.8 3.4 2 ⁶⁰ : 33dB 4000 31.6 2.9 2 ⁸⁰ : 22dB 4000 32.2 3.5	Class 5 8000 40.4 3.7 Class 5 29.7 3.8 Class 4 Class 4 8000 30.0 5.0
Frequency Mean Attenuation dB Standard Deviation dB PELTOR H6A Headb Frequency Mean Attenuation dB Standard Deviation dB Frequency Mean Attenuation dB Standard Deviation dB	125 17.9 3.2 and 125 9.6 4.2 and 125 10.1 4.0	250 23.4 2.6 9.8 3.3 250 10.9 4.2	 500 35.1 2.6 500 21.1 3.6 500 20.7 	40.6 4.5 1000 31.0 3.1 1000 30.5	2000 35.1 3.5 SLC 2000 27.2 4.1 SLC 2000 29.6 4.5	4000 41.8 3.4 33dB 4000 31.6 2.9 25% 22dB 4000 32.2	Class 5 8000 40.4 3.7 Class 5 29.7 3.8 Class 4 Class 4 8000 30.0 5.0
Frequency Mean Attenuation dB Standard Deviation dB PELTOR H6A Headb Frequency Mean Attenuation dB Standard Deviation dB Frequency Mean Attenuation dB Standard Deviation dB	125 17.9 3.2 and 125 9.6 4.2 and 125 10.1 4.0	23.4 2.6 9.8 3.3 250 10.9 4.2	500 35.1 2.6 500 21.1 3.6 500 20.7 4.1	40.6 4.5 1000 31.0 3.1 1000 30.5 3.6	2000 35.1 3.5 SLC 27.2 4.1 SLC 29.6 4.5 SLC	4000 41.8 3.4 3%: 33dB 4000 31.6 2.9 2%: 22dB 4000 32.2 3.5 %: 22dB	Class 5 8000 40.4 3.7 Class 5 8000 29.7 3.8 Class 4 8000 30.0 5.0 Class 4
Frequency Mean Attenuation dB Standard Deviation dB Frequency Mean Attenuation dB Standard Deviation dB Frequency Mean Attenuation dB Standard Deviation dB Standard Deviation dB	125 17.9 3.2 and 125 9.6 4.2 and 125 10.1 4.0 y Headba 125	250 23.4 2.6 9.8 3.3 250 10.9 4.2	 500 35.1 2.6 500 21.1 3.6 500 20.7 4.1 500 	40.6 4.5 1000 31.0 3.1 1000 30.5 3.6 1000	2000 35.1 3.5 SLC 27.2 4.1 SLC 29.6 4.5 SLC 2000	4000 41.8 3.4 200: 33dB 4000 31.6 2.9 200: 22dB 4000 32.2 3.5 200: 22dB	Class 5 8000 40.4 3.7 Class 5 8000 29.7 3.8 Class 4 8000 30.0 5.0 Class 4 8000
Frequency Mean Attenuation dB Standard Deviation dB Frequency Mean Attenuation dB Standard Deviation dB Frequency Mean Attenuation dB Standard Deviation dB Standard Deviation dB Standard Deviation dB	125 17.9 3.2 and 125 9.6 4.2 and 125 10.1 4.0 g Headba 125 10.0	23.4 2.6 9.8 3.3 250 10.9 4.2 10.9 4.2	 500 35.1 2.6 500 21.1 3.6 500 20.7 4.1 500 22.4 	40.6 4.5 1000 31.0 3.1 1000 30.5 3.6 1000 31.8	2000 35.1 3.5 SLC 2000 27.2 4.1 SLC 29.6 4.5 SLC 29.6 4.5 SLC 2000 31.9	4000 41.8 3.4 2 ³⁰ : 33dB 4000 31.6 2.9 2 ³⁰ : 22dB 4000 32.2 3.5 2 ³⁰ : 22dB 4000 31.3	Class 5 8000 40.4 3.7 Class 5 8000 29.7 3.8 Class 4 8000 30.0 5.0 Class 4 8000 30.0 5.0 Class 4 8000 3.0 Class 5 8000 3.0 Class 4 8000 3.0 Class 4 8000 8000 300 500 Class 4 8000 300 500 8000 300 500 8000 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300
Frequency Mean Attenuation dB Standard Deviation dB Frequency Mean Attenuation dB Standard Deviation dB Frequency Mean Attenuation dB Standard Deviation dB Standard Deviation dB	125 17.9 3.2 and 125 9.6 4.2 and 125 10.1 4.0 y Headba 125	250 23.4 2.6 9.8 3.3 250 10.9 4.2	 500 35.1 2.6 500 21.1 3.6 500 20.7 4.1 500 	40.6 4.5 1000 31.0 3.1 1000 30.5 3.6 1000	2000 35.1 3.5 SLC 2000 27.2 4.1 SLC 29.6 4.5 SLC 31.9 3.1.9 5.2	4000 41.8 3.4 2 ³⁰ : 33dB 4000 31.6 2.9 2 ³⁰ : 22dB 4000 32.2 3.5 2 ³⁰ : 22dB 4000 31.3 3.8	Class 5 8000 40.4 3.7 Class 5 8000 29.7 3.8 Class 4 8000 30.0 5.0 Class 4 8000 30.0 5.0 Class 4 8000 3.0 5.0 Class 5 8000 3.0 5.0 Class 5 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000
Frequency Mean Attenuation dB Standard Deviation dB PELTOR H6A Headb Frequency Mean Attenuation dB Standard Deviation dB Standard Deviation dB Standard Deviation dB Standard Deviation dB Frequency Mean Attenuation dB Standard Deviation dB	125 17.9 3.2 and 125 9.6 4.2 and 125 10.1 4.0 g Headba 125 10.1 4.0 3.5	250 23.4 2.6 9.8 3.3 250 10.9 4.2 10.9 4.2	500 35.1 2.6 500 21.1 3.6 500 20.7 4.1 500 22.4 3.1	40.6 4.5 1000 31.0 3.1 1000 30.5 3.6 1000 31.8	2000 35.1 3.5 SLC 2000 27.2 4.1 SLC 29.6 4.5 SLC 31.9 3.1.9 5.2	4000 41.8 3.4 2 ³⁰ : 33dB 4000 31.6 2.9 2 ³⁰ : 22dB 4000 32.2 3.5 2 ³⁰ : 22dB 4000 31.3	Class 5 8000 40.4 3.7 Class 5 8000 29.7 3.8 Class 4 8000 30.0 5.0 Class 4 8000 30.0 5.0 Class 4 8000 3.0 5.0 Class 5 8000 3.0 5.0 Class 5 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000
Frequency Mean Attenuation dB Standard Deviation dB PELTOR H6A Headb Frequency Mean Attenuation dB Standard Deviation dB Standard Deviation dB Standard Deviation dB Frequency Mean Attenuation dB Standard Deviation dB Standard Deviation dB	125 17.9 3.2 and 125 9.6 4.2 and 125 10.1 4.0 g Headba 125 10.1 4.0 3.5 573G Hel	250 23.4 2.6 9.8 3.3 250 10.9 4.2 10.9 4.2 10.4 3.6	500 35.1 2.6 500 21.1 3.6 500 20.7 4.1 500 22.4 3.1	40.6 4.5 1000 31.0 3.1 1000 30.5 3.6 1000 31.8 3.9	2000 35.1 3.5 SLC 27.2 4.1 SLC 29.6 4.5 SLC 31.9 5.2 SLC	4000 41.8 3.4 33dB 4000 31.6 2.9 22dB 4000 32.2 3.5 22dB 4000 31.3 3.8 3.8	Class 5 8000 40.4 3.7 Class 5 8000 29.7 3.8 Class 4 8000 5.0 Class 4 8000 32.0 3.3 Class 4
Frequency Mean Attenuation dB Standard Deviation dB PELTOR H6A Headb Frequency Mean Attenuation dB Standard Deviation dB Frequency Mean Attenuation dB Standard Deviation dB PELTOR H6F Folding Frequency Mean Attenuation dB Standard Deviation dB	125 17.9 3.2 and 125 9.6 4.2 and 125 10.1 4.0 g Headba 125 10.0 3.5 5P3G Hel 125	250 23.4 2.6 9.8 3.3 250 10.9 4.2 10.9 4.2 10.4 3.6 10.4 3.6	500 35.1 2.6 500 21.1 3.6 500 20.7 4.1 500 22.4 3.1	40.6 4.5 1000 31.0 3.1 1000 30.5 3.6 1000 31.8 3.9	2000 35.1 3.5 SLC 27.2 4.1 SLC 29.6 4.5 SLC 31.9 5.2 SLC 2000	4000 41.8 3.4 ***********************************	Class 5 8000 40.4 3.7 Class 5 8000 29.7 3.8 Class 4 8000 30.0 5.0 Class 4 8000 32.0 3.2 Class 4 8000 29.7 3.8 8000 29.7 3.8 8000 29.7 3.8 8000 29.7 3.8 8000 29.7 3.8 8000 29.7 3.8 8000 29.7 3.8 8000 29.7 3.8 8000 29.7 3.8 8000 29.7 3.8 8000 29.7 3.8 8000 29.7 3.8 8000 29.7 3.8 8000 29.7 3.8 8000 29.7 3.8 8000 20.7 3.8 8000 20.7 3.8 8000 20.7 3.8 8000 20.0 3.8 8000 20.7 3.8 8000 20.0 3.0 8000 20.0 3.0 8000 30.0 3.2 8000 3.2 8000 3.0 8000 3.2 80000 80000 8000 8000 80000 8000
Frequency Mean Attenuation dB Standard Deviation dB PELTOR H6A Headb Frequency Mean Attenuation dB Standard Deviation dB Standard Deviation dB Standard Deviation dB Frequency Mean Attenuation dB Standard Deviation dB Standard Deviation dB	125 17.9 3.2 and 125 9.6 4.2 and 125 10.1 4.0 g Headba 125 10.1 4.0 3.5 573G Hel	250 23.4 2.6 9.8 3.3 250 10.9 4.2 10.9 4.2 10.4 3.6	500 35.1 2.6 500 21.1 3.6 500 20.7 4.1 500 22.4 3.1	40.6 4.5 1000 31.0 3.1 1000 30.5 3.6 1000 31.8 3.9	2000 35.1 3.5 SLC 27.2 4.1 SLC 29.6 4.5 SLC 31.9 5.2 SLC	4000 41.8 3.4 33dB 4000 31.6 2.9 22dB 4000 32.2 3.5 22dB 4000 31.3 3.8 3.8	Class 5 8000 40.4 3.7 Class 5 8000 29.7 3.8 Class 4 8000 5.0 Class 4 8000 32.0 3.3 Class 4

SLC⁸⁰: 22dB Class 4

	PELTOR [®] H9A Headba	bnd						
0	Frequency	125	250	500	1000	2000	4000	8000
4	Mean Attenuation dB	8.2	12.8	25.3	33.6	28.9	30.1	32.3
7	Standard Deviation dB	3.8	3.9	4.1	3.7	3.5	3.1	5.4
s 5	otanuara portation ap	0.0	0.0		0.1		280: 24dB	
			al a akula	Naalshaa		UL	. 2 100	01000 1
0	PELTOR H9B Neckba					2000	4000	0000
0	Frequency	125	250	500	1000	2000	4000	8000
6 7	Mean Attenuation dB	9.6	13.2	23.3	33.3	32.1 5.3	31.9	31.8 3.8
	Standard Deviation dB	3.8	3.4	5.3	5.3		3.0 ⁸⁰ : 24dB	
85						SLU)**. 24uD	UId55 4
-	PELTOR [®] H9F Folding							
0	Frequency	125	250	500	1000	2000	4000	8000
3	Mean Attenuation dB	11.5	13.8	24.6	34.8	32.1	31.3	30.6
2	Standard Deviation dB	2.9	3.3	2.9	3.4	5.5	4.0	4.0
\$ 5						SLU	280: 25dB	Class 4
	PELTOR H9P3E & H9							
0	Frequency	125	250	500	1000	2000	4000	8000
8	Mean Attenuation dB	9.9	13.2	23.5	31.3	33.8	31.3	29.6
)	Standard Deviation dB	2.9	4.2	3.5	3.5	3.5	3.4	4.2
s 5						SLO	280: 24dB	Class 4
	PELTOR Kid's Series	- both n	nodels					
0	Frequency	125	250	500	1000	2000	4000	8000
8	Mean Attenuation dB	11.6	18.7	27.5	32.9	33.6	36.1	35.8
2	Standard Deviation dB	4.2	3.6	2.5	2.7	3.4	3.0	3.8
s 5			SNR 2	27dB (Cer	tified to E	uropean	Standard	EN352)
	PELTOR H505B Weld	lers Earr	nuff					
0	Frequency	125	250	500	1000	2000	4000	8000
9	Mean Attenuation dB	11.1	13.4	20.4	26.0	31.7	37.8	36.2
5	Standard Deviation dB	4.7	4.4	4.5	4.5	5.2	5.6	5.5
s 5						SLO	C ⁸⁰ : 22dB	Class 4
	PELTOR H9A-02 Foo	d Servic	e Earmu	ff				
0	Frequency	125	250	500	1000	2000	4000	8000
4	Mean Attenuation dB	14.0	17.6	24.6	28.5	33.5	39.3	38.2
7	Standard Deviation dB	3.0	2.9	3.4	4.0	3.5	5.0	3.4
s 5						SLO	280: 26dB	Class 5
	PELTOR H31P3E							
0	Frequency	125	250	500	1000	2000	4000	8000
7	Mean Attenuation dB	10.9	18.2	30.1	32.0	34.4	37.1	38.1
3	Standard Deviation dB	3.7	3.5	3.9	4.6	3.4	3.0	2.7
s 4						SLO	280: 28dB	Class 5
	PELTOR H31P3BB							
0	Frequency	125	250	500	1000	2000	4000	8000
0	Mean Attenuation dB	11.9	13.9	22.1	30.3	31.7	30.2	32.9
)	Standard Deviation dB	4.4	5.0	5.3	5.5	5.7	5.0	6.7
s 4						SLO	C ⁸⁰ : 23dB	Class 4
	PELTOR [®] X4A Earmut	ff						
0	Frequency	125	250	500	1000	2000	4000	8000
0	Mean Attenuation dB	18.3	19.2	28.1	39.2	38.1	43.7	43.1
3	Standard Deviation dB	5.1	2.9	3.7	4.8	3.1	4.8	5.2
s 4							C ⁸⁰ : 31dB	
	PELTOR [®] X4P3E Earn	nuff				020	2700	
0		125	250	500	1000	2000	4000	8000
	Frequency Mean Attenuation dB							
4		16.1	16.8	24.5	34.2	35.6	41.5	43.0

 Standard Deviation dB
 3.2
 3.6
 3.5
 5.3
 4.6
 6.5
 4.7

PELTOR [®] X5A Earmuff											
Frequency	125	250	500	1000	2000	4000	8000				
Mean Attenuation dB	23.2	25.3	35.8	43.8	39.7	41.5	40.7				
Standard Deviation dB	4.0	3.4	4.5	3.0	3.8	3.5	3.9				
					SLC ⁸⁰ : 35dB Class 5						
PELTOR X5P3E Earmuff											
Frequency	125	250	500	1000	2000	4000	8000				
Mean Attenuation dB	20.5	23.3	32.4	34.4	37.0	36.3	39.3				
Standard Deviation dB	4.6	5.6	5.0	4.4	4.4	4.6	3.9				
					SLC ⁸⁰ : 31dB Class 5						
PELTOR H31P3E											
Frequency	125	250	500	1000	2000	4000	8000				
Mean Attenuation dB	10.9	18.2	30.1	32.0	34.4	37.1	38.1				
Standard Deviation dB	3.7	3.5	3.9	4.6	3.4	3.0	2.7				
	SLC ⁸⁰ : 28dB Class 5										
PELTOR® 3M™ Economy 1426 Earmuff (worn over head)											
Frequency	125	250	500	1000	2000	4000	8000				
Mean Attenuation dB	12.7	17.3	27.7	36.9	36.3	38.2	32.3				
Standard Deviation dB	3.2	2.7	3.6	3.3	2.4	3.8	4.6				
SLC ⁸⁰ : 26dB Class											
PELTOR [®] 3M™ Economy 1436 Foldable Earmuff											

Frequency	125	250	500	1000	2000	4000	8000
Mean Attenuation dB	12.6	19.5	30.6	36.6	33.1	40.7	38.0
Standard Deviation dB	2.8	3.0	3.6	3.9	2.7	2.3	1.9
SLC ⁸⁰ : 27dB Clas						Class	

Hearing Protection Solutions Made Innovatively Easy

Detecting and monitoring noise exposures in the workplace is the first step to ensure your workforce is protected. 3M's accurate, reliable, and flexible instrumentation coupled with powerful software is the innovative solution for your noise detection challenge.

It is critical to select hearing protectors that your employees are motivated to wear. 3M has a broad selection of hearing protectors for a wide range of environments. Trouble fitting your earplugs? Need to communicate in noise? Dirty hands? Hot, humid conditions? These are just a few of the many challenges that 3M's innovative products can help solve for you.

3M[™] E-A-Rfit[™] Validation System utilises F-MIRE technology to measure and obtain an objective, quantitative level of employee hearing protection in just 10 seconds per ear. Workers receive their own personal attenuation rating (PAR) and learn how correctly fitting their earplugs increases their level of protection.

3M customers can also contact 3M TechAssist on 1800 024 464 (AU) 0800 364 357 (NZ) to answer questions on product information, technical advice and guidance with product selection.

AWARNING

Hearing Protection Products*

These hearing protectors help reduce exposure to hazardous noise and other loud sounds. Misuse or failure to wear hearing protectors at all times that you are exposed to noise may result in hearing loss or injury. For proper use, see supervisor, User Instructions, or call the 3M Personal Safety Technical Service team If there is any drainage from your ear or you have an ear infection, consult with you physician before wearing earplugs. Failure to do so may result in hearing loss or injury Choking Hazard—Keep away from infants and small children.

The Bluetooth word mark is a registered trademark owned by Bluetooth SIG, Inc. iPod is a registered trademark of Apple Inc., registered in the U.S. and other countries. Peltor is a trademark of 3M Svenska AB. 3M and all other trademarks used herein are trademarks of 3M Company, and The Power to Protect Your World is a service mark of 3M Company, used under license in Canada.

Personal Safety Division

3M Australia Pty Limited Building A, 1 Rivett Road North Ryde NSW 2113 TechAssist Helpline: 1800 024 464 TechAssist Email: techassist@mmm.com TechAssist Helpline: 0800 364 357 Customer Service: 1300 363 565

Website: 3m.com/au/ppesafety

3M New Zealand Limited 94 Apollo Drive, Rosedale Auckland 0632 Customer Service: 0800 252 627

Website: 3m.com/nz/ppesafety

PSSSP0HE006

Please recycle. Printed in Australia. © 3M 2013. All rights reserved. PB7182.12.14