asa

Aviation Maintenance Technician Series

DALE CRANE

Powerplant Fourth Edition

Aviation Maintenance Technician Series

Powerplant Fourth Edition

 $D {\sf ALE} \ C {\sf RANE}$

T. DAVID SCROGGINS Technical Editor

PROFESSOR OF APPLIED AVIATION SCIENCES COLLEGE OF AVIATION LETOURNEAU UNIVERSITY

Aviation Supplies & Academics, Inc. Newcastle, Washington Aviation Maintenance Technician Series: Powerplant Fourth Edition

Aviation Supplies & Academics, Inc. 7005 132nd Place SE Newcastle, Washington 98059-3153 Email: asa@asa2fly.com Website: www.asa2fly.com

Visit the Reader Resources webpage for further resources and updates to this book at **www.asa2fly.com/amtp**

© 1996–2018 ASA All rights reserved. Fourth Edition published 2018. First Edition published 1996.

Cover photo © Gary Gladstone via The Image Bank/Getty Images 2018

Photo credits and acknowledgments: p. 6—Pratt & Whitney Division, United Technologies Corp.; p. 11—The General Electric Company; p. 44—Jerry Lee Foulk; p. 46—Teledyne-Continental Motors; pp. 207, 211, 216, 219, 229—Bendix Electrical Components Division; p. 494—Champion Aviation Products Division; p. 526—Instrument Technology, Inc.; pp. 527, 528—Machida, Incorporated; p. 536—Milbar Specialty Tools; p. 538—Howell Instruments, Inc.; p. 607—Sundstrand Corporation; p. 709—The General Electric Company; p. 721—TEC Aviation Division

Cermicrome is a registered trademark of Engine Components, Inc. Cermisteel and CermilNil are trademarks of Engine Components, Inc. All other trademarks are registered with their respective owners.

ASA-AMT-P4-PD ISBN 978-1-61954-648-6

CONTENTS

	Preface to the Fourth Edition v
	About the Author and Editors vii
	Acknowledgements ix
1	Development of Aircraft Powerplants 1
	Reciprocating Engines
2	Theory & Construction 17
3	Lubrication Systems 93
4	Fuel Metering & Induction Systems 125
5	Ignition Systems 205
6	Exhaust Systems 255
7	Cooling Systems 269
8	Starting Systems 279
9	Operation & Maintenance 291
	Turbine Engines
10	Theory & Construction 355
11	Lubrication & Cooling Systems 435
12	Fuel Metering Systems 465
13	Ignition & Starting Systems 493
14	Exhaust Systems 515
15	Operation & Maintenance 527
	Powerplant Auxiliary Systems
16	Instrument Systems 555
17	Electrical Systems 593
18	Fire Protection Systems 641
19	Propellers 663
	Glossary 739

Index 775

PREFACE TO THE FOURTH EDITION

Aviation maintenance is a profession requiring a broad spectrum of skills and knowledge that is constantly evolving as new technologies are introduced. Technicians today need a solid foundation of mechanics, physics, electricity, electronics and logic, in addition to the information unique to aircraft maintenance and construction. The training material in the *Aviation Maintenance Technician Series* is chosen to reflect today's required knowledge for the aviation maintenance technician. This material comes from a combination of both personal experience and research. Like previous editions, this *Powerplant* textbook, along with the other ASA maintenance volumes, endeavors to meet the needs of today's technicians.

ASA is dedicated to providing easy to understand training materials for the AMT certificate applicant. The chapters are carefully chosen to reflect FAA requirements, while the arrangement of information is intended to lend itself to a Part 147 curriculum. This arrangement also provides a logical flow of information that enhances individual learning. Therefore, the AMT Series textbooks contribute to the knowledge necessary for the building of wellrounded aircraft technicians, who will not only be equipped to understand the workings of aircraft systems, but will have the skills to repair, service, inspect, and troubleshoot them.

Additional recommended study materials would include such material as the FAA's *Aviation Maintenance Technician Handbook—General* (FAA-H-8083-30), *—Airframe* (FAA-H-8083-31), and *—Powerplant* (FAA-H-8083-32), also available from ASA. ASA provides the best collection of AMT-related federal aviation regulation reprints in *FAR for Aviation Maintenance Technicians*, printed yearly and provided with periodic updates on the ASA website (www.asa2fly.com). For those who are preparing to take their FAA exams, ASA's Test Guides are an invaluable tool to test your knowledge of aircraft maintenance.

Finally, we in aviation build on the legacy of the people who came before us as pioneers. That was true for the early experimenters trying to get off the ground for the first time just as it is true for today's mechanics, engineers, and pilots who are building and operating jumbo jets. The principle of building on the legacy of others is certainly true with this textbook—Dale Crane was the author of many of the ASA texts. Many students over the years came to trust Dale's authorship to not only inform, but to do so in an accurate, concise, and straight-forward manner.

Continued

Later, technical editors carried on that tradition by updating the book as aviation technology continued to evolve. The current technical editor never had the opportunity to study directly under Mr. Crane but many of his mentors and friends began their careers in aviation as Mr. Crane's students. Therefore, the current technical editor benefits heavily from Mr. Crane's knowledge and ability. It is the goal of this editor to carry on in the tradition of quality and clarity that Dale Crane established.

T. David Scroggins Technical Editor for the Fourth Edition

About the Author and Editors

Dale Crane (1923 – 2010) was involved in aviation for more than 50 years. He began his career in the U.S. Navy as a mechanic and flight engineer in PBYs. After World War II, he attended Parks Air College. After college, he worked as an instrument overhaul mechanic, instrument shop manager, and flight test instrumentation engineer. Later he became an instructor and then director of an aviation maintenance school. Dale was active as a writer of aviation technical materials, and as a consultant in developing aviation training programs. ATEC presented to Dale Crane their special recognition award for "his contribution to the development of aviation technicians as a prolific author of specialized maintenance publications." He also received the FAA's Charles Taylor "Master Mechanic" award for his years of service in and contributions to the aviation maintenance industry, and the recognition of his peers for excellence as a leader and educator in aircraft maintenance, and aviation safety advocate.

T. David Scroggins, technical editor for the Fourth Edition, is a Professor of Applied Aviation Science in the College of Aviation at LeTourneau University. He studied in Moody Bible Institute's Aviation program obtaining his Bachelor of Science in Missionary Aviation Technology; after earning his Mechanic's certificate in 1981, David worked in several general aviation maintenance jobs in the U.S. and overseas. He started teaching at LeTourneau University in 1992; in 1996 he earned his Master of Science Degree in Technology from the University of Texas at Tyler. At LeTourneau David teaches courses in Reciprocating Engines, Turbine Engines, Propellers and Instrument Systems. He currently holds an Airframe and Powerplant Mechanic certificate, a Commercial Pilot Certificate and a Mechanic Examiner's Designation.

Technical editors for the previous editions were Pat Benton, Western Michigan University, and Terry Michmerhuizen, Cornerstone College (First and Second Editions); Jerry Lee Foulk, LeTourneau University (Second and Third Editions).

Acknowledgements

A series of texts such as this *Aviation Maintenance Technician Series* could never be compiled without the assistance of modern industry. Many individuals have been personally helpful, and many companies have been generous with their information. We want to acknowledge this and say thank you to them all.

ACES Systems—TEC Aviation Division, Knoxville, TN Aero Quality International, Stamford, CT Aero-Mach Labs, Inc., Wichita, KS Aeroquip Corporation, Jackson, MI Airborne Division, Parker Hanniflin Corporation, Elvria, OH Allied Signal Aerospace, Phoenix, AZ Allison Engine Company, Indianapolis, IN ASCO Aeronautical, Columbus, OH Aviation Laboratories, Inc., Houston. TX Barfield, Inc., Atlanta, GA Beech Aircraft Corporation, Wichita. KS Bendix Electrical Components Division, Sidney, NY Cessna Aircraft Company, Wichita, KS Chadwick-Helmuth Company, Inc., El Monte, CA **Champion Aviation Products** Division, *Liberty*, SC

Continental Motors Group, Mobile, AL Dowty-Rotol, Inc., Cheltenham, England Dvnamic Solutions Systems, Inc., San Marcos. CA Engine Components, Inc., San Antonio, TX General Electric Company, Cincinnati, OH Gulfstream Aerospace, Savannah, GA Hamilton Standard Division of United Technologies, Windsor Locks, CT Howell Instruments, Inc., Fort Worth. TX Machida Incorporated, Orangeburg, NY McCauley Accessory Division Cessna Aircraft Company, Vandalia, OH Milbar Corporation, Chagrin Falls, OH NASA Lewis Research Center, Cleveland, OH Pratt & Whitney Canada,

Longueuil, Quebec, Canada

Precision Airmotive Corporation, Everett, WA Quan-Tech, Flanders, NJ Ram Aircraft Corporation, *Waco, TX* Saft America, Inc., Valdosta, GA Slick Aircraft Products, Division of Unison, Rockford, IL Standard Aero, Winnipeg, Manitoba, Canada Stanley-Proto Industrial Tools, Covington, GA Stead Aviation Corporation, Manchester. NH Sundstrand Corp., Rockford, IL Superior Air Parts, Inc., Addison, TX Textron Lycoming, Williamsport, PA **TRW Hartzell Propeller Products** Division, Piqua, OH T.W. Smith Engine Company, Inc., Cincinnati, OH UE Systems, Inc., Elmsford, NY United Technologies, Pratt & Whitney, East Hartford, CT

Welch Allyn Imaging Products Division, Skaneateles Falls, NY

DEVELOPMENT OF AIRCRAFT POWERPLANTS

The Principle of Heat Engines3External-Combustion Engines3Internal-Combustion Engines4	
Aircraft Reciprocating Engines 4	
Aircraft Turbine Engines 8	
Electrically Powered Engines 11	
Study Questions: Development of Aircraft Powerplants	13
Answers to Chapter 1 Study Questions 14	

DEVELOPMENT OF AIRCRAFT POWERPLANTS **Chapter 1**

DEVELOPMENT OF AIRCRAFT POWERPLANTS

The first man-carrying flights were made in hot air balloons swept along by air currents and without means for the pilot to control the direction of flight. Aircraft had little practical utility until the development of engine-driven propellers. This development of the powerplant has made aviation the vital factor that it is today in the economic world.

The Principle of Heat Engines

All powered aircraft are driven by some form of heat engine. Chemical energy stored in the fuel is released as heat energy that causes air to expand. The expansion of this air is what performs useful work, driving either a piston or a turbine.

There are two basic types of heat engines: external-combustion and internal-combustion.

External-Combustion Engines

External-combustion engines are most familiar to us as steam engines. Energy released in coal- or gas-fired furnaces or in nuclear reactors is transferred into water, changing it into steam that expands and drives either a piston or a turbine.

Steam engines were used to power experiments in flight made during the late 1800s. Dr. Samuel Langley of the Smithsonian Institution in Washington, D.C. used small steam engines to power a successful series of unmanned machines he called Aerodromes. In 1896, Dr. Langley made a number of powered flights with these models. The most successful had tandem wings with a span of 14 feet, weighed 26 pounds, and was powered by a one-horsepower steam engine. It was launched from a catapult atop a houseboat on the Potomac river, and flew for 90 seconds, traveling more than half a mile.

There was one successful but impractical aircraft steam engine developed in America in 1933 by the Besler brothers, manufacturers of logging locomotives. This 150-horsepower engine, using an oil-fired boiler and having a total installed weight of approximately 500 pounds, was used to power a Travel Air 2000 biplane. **powerplant.** The complete installation of an aircraft engine, propeller, and all accessories needed for its proper function.

heat engine. A mechanical device that converts chemical energy in a fuel into heat energy, and then into mechanical energy.

internal-combustion engine. A form of heat engine in which the fuel and air mixture is burned inside the engine.

external-combustion engine. A form of heat engine in which the fuel releases its energy outside of the engine.

piston. The movable plug inside the cylinder of a reciprocating engine.

turbine. A wheel fitted with vanes or airfoils radiating out from a central disk. Used to extract energy from a stream of moving fluid.

Aerodrome. The name given by Dr. Samuel Langley to the flying machines built under his supervision between the years of 1891 and 1903. **Otto cycle of energy transformation.** The four-stroke, five-event, constant-volume cycle of energy transformation used in a reciprocating engine.

gas turbine engine. An internal combustion engine that burns its fuel in a constantpressure cycle and uses the expansion of the air to drive a turbine which, in turn, rotates a compressor. Energy beyond that needed to rotate the compressor is used to produce torque or thrust.

turbojet engine. A gas turbine engine that produces thrust by accelerating the mass of air flowing through it.

turbofan engine. A type of gas turbine engine in which lengthened compressor or turbine blades accelerate air around the outside of the core engine.

turboprop engine. A turbine engine in which energy extracted from the accelerated gases is used to drive a propeller.

turboshaft engine. A turbine engine in which energy extracted from the accelerated gases is used to drive helicopter rotors, generators, or pumps.

reciprocating engine. A type of heat engine that changes the reciprocating (back-and-forth) motion of pistons inside the cylinders into rotary motion of a crankshaft.

brake horsepower. The actual horsepower delivered to the propeller shaft of an aircraft engine.

cylinder. The component of a reciprocating engine which houses the piston, valves, and spark plugs and forms the combustion chamber.

Internal-Combustion Engines

The concept of releasing energy from fuel directly inside an engine to heat and expand the air has challenged engineers since the late 1700s. The expanding air can drive reciprocating pistons or spin turbines.

Coal dust, gunpowder, and even turpentine vapors have been exploded inside cylinders, but it was not until 1860 that the French engineer Etienne Lenoir actually built a practical engine that could use illuminating gas as its fuel.

In 1876, Dr. Nikolaus Otto of Germany made practical engines using the four-stroke cycle that bears his name, and it is the principal cycle upon which almost all aircraft reciprocating engines operate. This cycle of energy transformation is discussed in detail in Chapter 2.

Gas turbine engines in the form of turbojet, turbofan, turboprop, and turboshaft engines have revolutionized aviation, and their principle of operation is discussed in Chapter 10.

Aircraft Reciprocating Engines

Throughout the history of aviation, progress has always been dependent upon the development of suitable powerplants.

Aviation as we know it today was born at the beginning of the 1900s with powered flights made by Wilbur and Orville Wright. The Wright brothers approached the problems of flight in a sensible and professional way. They first solved the problem of lift with kites, then the problem of control with gliders, and finally by 1902, they were ready for powered flight. First they painstakingly designed the propellers and then began their search for a suitable engine. Their requirements were for a gasoline engine that would develop 8 or 9 brake horsepower and weigh no more than 180 pounds. No manufacturer had such an engine available, and none were willing to develop one for them. Their only recourse was to design and build it on their own.

The engine, built to their design by Mr. Charles Taylor, had four cylinders in-line and lay on its side. It drove two $8\frac{1}{2}$ -foot-long wooden propellers through chain drives and developed between 12 and 16 horsepower when it turned at 1,090 RPM. It weighed 179 pounds.

On December 17, 1903, this engine powered the Wright *Flyer* on its historic flight of 59 seconds, covering a distance of 852 feet on the wind-swept sand at Kitty Hawk, North Carolina.

Because of Dr. Langley's success with his Aerodromes, the U.S. government gave him a contract to build a full-scale man-carrying machine. The steam engines used in the models could not be effectively scaled up to power this aircraft, so a better means of propulsion had to be found.

Charles Manly, Dr. Langley's assistant, searched without success, both in the United States and Europe, for a suitable powerplant. The best he found was a three-cylinder rotary radial automobile engine built by Stephen Balzer in New York. This engine was not directly adaptable to the Aerodrome, but Manly, building upon Balzer's work, constructed a suitable engine for it. The Manly-Balzer engine was a five-cylinder, water-cooled static radial engine that produced 52.4 horsepower at 950 RPM and weighed 207.5 pounds complete with water.

On October 7, 1903, the full-scale Aerodrome with Manly as the pilot was launched from atop the houseboat. As the aircraft neared the end of the catapult, it snagged part of the launching mechanism and was dumped into the river. But Manly's engine, which was far ahead of its time, functioned properly and was in no way responsible for the failure of the Aerodrome to achieve powered flight.

Glenn Curtiss was a successful motorcycle builder and racer from western New York state. The use of one of his motorcycle engines in a dirigible in 1907 got Curtiss interested in aviation, and as a result, he became involved in furnishing the powerplants for Dr. Alexander Graham Bell's Aerial Experiment Association. A number of successful aircraft, including the first aircraft to fly in Canada, came from this group.

Curtiss's own company designed and built some of the most important engines in America in the periods before and during World War I and up until 1929, when the Curtiss Aeroplane and Motor Corporation merged with the Wright Aeronautical Corporation to form the giant Curtiss-Wright Corporation.

World War I, between 1914 and 1918, was a time of rapid growth in aviation. The British, French, Germans, and Americans all developed aero engines.

One of the most popular configuration of engines built in this era was the rotary radial engine. With this engine, the crankshaft was attached rigidly to the airframe, and the propeller, crankcase, and cylinders all spun around. Clerget, Gnome, and Rhone in France, Bentley in Britain, Thulin in Sweden, and Oberursel, BMW, Goebel, and Siemens-Halske in Germany all built rotary radial engines. These engines had 5, 7, 9, 11, or 14 cylinders and produced between 80 and 230 horsepower.

The Germans used some very efficient 6-cylinder in-line water-cooled engines built by the Mercedes, Maybach, BMW, Benz, and Austro-Daimler companies. Some of these engines developed up to 300 hp.

Some of the most popular V-8 engines of this time were the French-built 150- to 300-horsepower Hispano-Suizas. These engines were also built under license agreements in Great Britain and the United States.

There were only two aircraft engines designed and built in quantities in the United States during this time, and both were V-engines. Glenn Curtiss's Company built the 90-horsepower, water-cooled V-8 Curtiss OX-5 engine in great numbers, and various automobile manufacturers built the 400-horsepower water-cooled V-12 Liberty engine.

dirigible. A large, cigar-shaped, lighterthan-air flying machine. Dirigibles differ from balloons in that they are powered and can be steered.

rotary radial engine. A form of reciprocating engine in which the crankshaft is rigidly attached to the airframe and the cylinders revolve with propeller.

crankshaft. The central component of a reciprocating engine. This high-strength alloy steel shaft has hardened and polished bearing surfaces that ride in bearings in the crankcase. Offset throws, formed on the crankshaft, have ground and polished surfaces on which the connecting rods ride. The connecting rods change the in-and-out motion of the pistons into rotation of the crankshaft.

crankcase. The housing that encloses the crankshaft, camshaft, and many of the accessory drive gears of a reciprocating engine.

The cylinders are mounted on the crankcase, and the engine attaches to the airframe by the crankcase.

V-engine. A form of reciprocating engine in which the cylinders are arranged in two banks. The banks are separated by an angle of between 45° and 90°.

Pistons in two cylinders, one in each bank, are connected to each throw of the crankshaft.

Curtiss Jenny (Curtiss JN4-D). A World War I training airplane powered by a Curtiss OX-5 engine. It was widely available after the war and helped introduce aviation to the general public.

Standard J-1. A World War I training airplane powered by a Curtiss OX-5 engine.

DeHaviland DH-4. An English designed observation airplane built in large quantities in America during World War I. After the war, surplus DH-4s were used for carrying the U.S. mail.

radial engine (static radial). A form of reciprocating engine in which the cylinders radiate out from a small central crankcase. The pistons in the cylinders drive a central crankshaft which in turn drives the propeller.

Figure 1-1. The Pratt & Whitney R-4360 Wasp Major, with 28 air-cooled cylinders weighed 3,670 pounds and produced 3,800 horsepower. This engine, with four rows of seven cylinders, was the largest practical aircraft reciprocating engine.

The years between World Wars I and II are called the golden years of aviation because of the tremendous strides made during this era. Powerplant development was largely responsible for this progress.

At the end of hostilities in 1918, the aviation market was flooded with surplus Curtiss Jennies and Standard J-1s, with their Curtiss OX-5 engines and DeHaviland DH-4 airplanes with Liberty V-12 engines. These airplanes and engines, while limited in utility, were so abundant and cheap that manufacturers were discouraged from developing new engines until these were used up.

Aviation did not become a viable form of transportation until a dependable engine was developed. Beginning in about 1923, Charles Lawrance built a 9-cylinder radial engine that was developed by the Wright Aeronautical Corporation into their famous Whirlwind series of engines, the most famous of which was the 220-horsepower Wright J-5. This is the engine that powered Charles Lindbergh's *Spirit of St. Louis* on its successful 33-hour nonstop flight from New York to Paris in May of 1927. About two weeks later, Clarence Chamberlain, flying a Bellanca, also powered by a Wright J-5 engine, flew nonstop from New York to Germany in 43 hours.

Small 3-, 5-, and 7-cylinder radial engines powered the light airplanes of the 1930s and 1940s, and 7-, 9-, and 14-cylinder radial engines powered the faster private and business airplanes, as well as military and airline aircraft.

During World War II the radial engine was the most popular configuration in the United States. Some fighter airplanes used liquid-cooled V-12 engines, but most aircraft were powered by 9-, 14-, and 18-cylinder radial engines, and by the end of the war, by a popular 28-cylinder engine.

The point of diminishing returns in reciprocating engine development was reached during World War II by the Lycoming XR-7755, a 5,000-horse-power 36-cylinder liquid-cooled radial engine. Fortunately the gas-turbine engine became functional at about this time.

Horizontally opposed engines first became popular as powerplants for very light aircraft in 2- and 4-cylinder models of less than 40 horsepower. This configuration has the advantage of smooth operation, small frontal area, light weight, and dependability. Because of these characteristics, they have been widely produced with 4-, 6-, and even 8-cylinders, with power output of up to 520 horsepower or more.

After World War II, horizontally opposed engines replaced radial engines for almost all reciprocating engine-powered private airplanes. Recently, however, there have been a several in-line and V-configured diesel engines marketed. Private aviation in the United States has undergone drastic changes since the 1960s. The cost of private aircraft ownership skyrocketed because of the proliferation of product liability lawsuits, and commercial manufacturers virtually stopped producing reciprocating-engine-powered private aircraft in the 1980s. By the mid 1990s, changes in tort reform laws encouraged some manufacturers to re-enter the private aircraft field.

The amateur-built or homebuilt aircraft movement originally began because people wanted to build and fly ultra-simple aircraft without complex tooling, at minimum of cost. Today there are still some very basic designs yet there are also a number of homebuilt aircraft on the cutting edge of technology, costing hundreds of thousands of dollars. Freedom from some of the FAA constraints under which production aircraft are built and the accompanying reduction of the threat of product liability lawsuits allow private builders to exploit the limitless advantages of composite construction.

Amateur-built aircraft do not require FAA-certificated engines, and as a result, there is a strong movement in the conversion of automobile engines for aircraft use. Some converted automobile engines are truly state-of-the-art powerplants, with electronic ignition and fuel injection. The safety record for these engines is excellent, and it is quite possible that this will continue to be a viable means of developing engines for private aircraft in the future.

As aviation begins its second century, the gasoline reciprocating engine, in spite of its inefficiency, continues to be used, but not without competition. Practically all airline and military aircraft are turbine powered and will continue to be.

Air-cooled, horizontally-opposed gasoline engines will continue to dominate the piston-powered aircraft market for the foreseeable future. There have been, and continue to be, inroads made to develop more fuel-efficient powerplants, but none have risen to the forefront in any significant way to unseat the gasoline-fired mainstay. Some of the ongoing innovations include liquid-cooled gasoline engines, compression-ignition (CI) engines, rotating combustion (RC) engines developed from the Wankel engine, and cam (as opposed to crankshaft) engines.

The most significant of these improved engines has been the compressionignition engine, better known as the diesel engine. The diesel or CI engine is about 10% to 15% more fuel efficient than the gasoline engine. This could be a significant savings if that were the only consideration, but the CI engine is considerably heavier than the gasoline-fired engine. This aspect in itself produces considerable inefficiencies when cost per mile is concerned; the search for ideas for more efficient piston engine power therefore continues. **amateur-built aircraft.** Aircraft built by individuals as a hobby rather than by factories as commercial products. Amateur-built or homebuilt aircraft do not fall under the stringent requirements imposed by the FAA on commercially built aircraft.

rotating combustion (RC) engine. A form of internal combustion engine in which a rounded, triangular-shaped rotor with sliding seals at the apexes forms the combustion space inside an hourglassshaped chamber. Expanding gases from the burning fuel-air mixture push the rotor around and turn a geared drive shaft in its center. The RC engine was conceived in Germany by Felix Wankel in 1955. Figure 1-2 highlights the progress made in aircraft reciprocating engines. In only 40 years, engines progressed from almost 15 pounds per horsepower to slightly less than one pound per horsepower.

Manufacturer and Name	Year	Configuration	H.P.	Weight
Wright <i>Flyer</i>	1903	4 I L	12-16	179
Manly-Balzer	1903	5 R L	52.4	207
Curtiss OX-5	1910	8V L	90	400
Le Rhone J	1916	9 Ro A	120	323
Liberty V-12	1918	12 V L	400	900
Wright J-5	1925	9 R A	220	510
Pratt & Whitney R-1830	1932	14 R A	1,200	1,467
Wright Turbocompound	1940	18 R A	3,700	2,779
Pratt & Whitney R-4360	1943	28 R A	4,300	3,600
Engines for Private Aircraft				
Continental A-65	1938	4 O A	65	170
Lycoming TIGO-541	1959	6 O A	450	396
I = Inline, R = Radial, V = V, Ro = Rotary, O = Horizontally opposed, L = Liquid cooled, A = Aircooled				

Figure 1-2. Progress made in aircraft reciprocating engines

Aircraft Turbine Engines

The principle of using a turbine as a source of power has been known for more than 400 years, since the days of Leonardo da Vinci. Wind-driven turbines in the form of windmills have converted much of the arid wasteland in the western United States into profitable farms and ranches.

Water-driven turbines are used to generate electricity in the huge hydroelectric powerplants, and steam turbines are used to drive electrical generators and propel ocean-going ships.

The first practical use of turbines in aviation was the turbosupercharger developed by Dr. Sanford Moss during World War I. A turbine spun by exhaust gases leaving the engine drove a centrifugal compressor that increased the pressure of the air entering the cylinders. Turbosuperchargers allow reciprocating engines to maintain their sea-level power to a high altitude.

The gas-turbine engine is a logical progression from a turbosupercharger. A combustion chamber is placed between the turbine wheel and the compressor. Air from the compressor flows through the combustion chamber where fuel is added and burned. The expanding gases drive the turbine, which in turn drives the compressor. Though the compressor requires a tremendous amount of power, the turbine produces enough, with some left over for torque or thrust.

turbosupercharger. A centrifugal air compressor driven by exhaust gases flowing through a turbine. The compressed air is used to increase the power produced by a reciprocating engine at altitude.

centrifugal compressor. An air compressor that uses a scroll-type impeller. Air is taken into the center of the impeller and slung outward by centrifugal force into a diffuser where its velocity is decreased and its pressure is increased.

In 1929, Frank Whittle, a brilliant young pilot-officer in the British Royal Air Force, filed a patent for a turbojet airplane engine. Unfortunately, Whittle's genius was not appreciated, and it was not until 1937 that his first jet engine actually ran.

Some scientists in the British Air Ministry were interested in gas-turbine engines, but thought of them only as a source of power to drive propellers.

A propeller produces thrust by delivering a small change in momentum to a large mass of air, but Whittle's concept was that thrust could be produced by a jet engine delivering a far larger change in momentum to a much smaller mass of air. The thrust produced by a turbojet would increase as the aircraft flew faster and would be efficient at high altitude.

Whittle's engine used a turbine-driven centrifugal compressor to move a large mass of air through the engine. Fuel was sprayed into the fast moving air and burned, expanding it and accelerating it enough to produce useful thrust.

The turbojet engine came about at exactly the correct time. In spite of the lack of interest by the British government, Frank Whittle and his small but devoted crew at Power Jets, Ltd., proved the feasibility of the turbojet engine. In October of 1941, The General Electric Company was licensed to build the Whittle engine in the United States. GE was chosen for two reasons: because of their experience with turbosuperchargers, and because the two primary aircraft engine manufacturers, Pratt & Whitney and Wright Aeronautical, had more than they could handle in the continued development of reciprocating engines that were so desperately needed for the war which, at that time, appeared imminent.

The technology of turbojet engines was so new and the world was so deeply involved in the war, that no great strides in turbine engine development were made until the war was over.

At the end of the war, many reciprocating engines were declared surplus and sold for such low prices that there was little incentive for manufacturers to design and build new reciprocating engines. The gas turbine engine showed so much promise that neither Pratt & Whitney nor Wright Aeronautical felt it wise to continue developing reciprocating engines. Pratt & Whitney transitioned heavily into turbine engines, but Wright Aeronautical did not develop any of their own. They did produce some British engines under license but soon departed entirely from aviation engines.

Turbine engines have a far greater versatility than reciprocating engines because they can be operated either as a thrust or torque producer. Turbojet and turbofan engines produce thrust by accelerating a mass of air. Turboprop and turboshaft engines produce torque to drive propellers or helicopter rotors, or generators and air compressors for auxiliary power units. **torque.** A force that produces or tries to produce rotation.

thrust. The aerodynamic force produced by a propeller or turbojet engine as it forces a mass of air to the rear, behind the aircraft.

A propeller produces its thrust by accelerating a large mass of air by a relatively small amount. A turbojet engine produces its thrust by accelerating a smaller mass of air by a much larger amount. **power.** The time rate of doing work. Power is found by dividing the amount of work done, measured in foot-pounds, by the time in seconds or minutes used to do the work.

Power may be expressed in foot-pounds of work per minute or in horsepower. One horsepower is 33,000 foot-pounds of work done in one minute, or 550 foot-pounds of work done in one second.

thrust horsepower. The horsepower equivalent of the thrust produced by a turbojet engine. Thrust horsepower is found by multiplying the net thrust of the engine, measured in pounds, by the speed of the aircraft, measured in miles per hour, and then dividing this by 375.

	R-1830 Reciprocating	PT-6 Turboprop
Takeoff horsepower	1,200	1,377
Weight	1,500	486
Horsepower/ weight ratio	0.8	2.8

Figure 1-3. Horsepower to weight ratio comparison between a reciprocating engine and a turboprop engine of comparable power

There is no direct comparison between turbine engines and reciprocating engines that allows us to visualize the tremendous strides that have been made in aircraft propulsion systems, but we can convert thrust into thrust horsepower and make a power-to-weight comparison.

Power requires movement, so thrust horsepower must take into consideration the speed of the aircraft. Thrust horsepower is found by multiplying the net thrust of the engine measured in pounds, by the speed of the aircraft measured in miles per hour, then dividing this by 375.

Thrust horsepower = $\frac{\text{Net thrust (pounds)} \cdot \text{Aircraft speed (miles per hour)}}{375 \text{ mile-pound / hour}}$

The Pratt & Whitney R-1830 engine used in the ubiquitous Douglas DC-3 weighed approximately 1,500 pounds and produced 1,200 brake horsepower for takeoff. This is a power-to-weight ratio of 0.8 horsepower per pound, which is still an acceptable ratio for reciprocating engines.

The Pratt & Whitney JT9D that powers the Boeing 747 weighs approximately 9,000 pounds and produces up to 56,000 pounds of thrust, which at a cruise speed of 550 miles per hour, gives a little over 82,000 thrust horsepower. This is a power-to-weight ratio of a little more than 9 horsepower per pound!

It is easy to see the advantage that turbine engines have over reciprocating engines by comparing two popular torque-producing engines of the same basic power and used in the same types of aircraft. The Pratt & Whitney R-1830 reciprocating engine powers the 21-passenger Douglas DC-3, and the Pratt & Whitney of Canada PT-6 turboprop engine powers the 19-passenger Beech 1900D airliner. The power-to-weight ratio of the turboprop engine is 3.5 times as high as that of the reciprocating engine. *See* Figure 1-3.

Thrust-producing turbine engines have made tremendous progress since their first flight in 1939. Figure 1-4 shows the progress made in a little over fifty years.

Manufacturer Name	Туре	Mass Airflow pounds/second	Thrust pounds	Weight pounds	Application
Whittle W1	TJ	22	850	623	E. 28/29
Allison J-33	TJ	90	4,600	1,820	F-80
P&W JT4	TJ	256	17,500	5,100	B-707
P&W JT8D	TF	331	17,400	3,500	B-727
G.E. CF6	TF	1,465	51,000	8,731	DC-10
RR RB.211	TF	1,658	63,000	9,874	B-747
TJ = Turbojet	TF = Tu	rbofan			

Figure 1-4. Progress in thrust-producing turbine engines

Turbofan engines have almost completely replaced turbojet engines, and a new generation of ultra-high-bypass engines shows promise of opening a new niche between the turboprop and the turbofan. UHB engines, such as that in Figure 1-5, drive short, multiblade, contrarotating propellers and have high propulsive efficiency, low noise, low thrust specific fuel consumption, and a high power-to-weight ratio.

TSFC (thrust specific fuel

consumption). A measure of the efficiency of a turbojet or turbofan engine. TSFC is the number of pounds of fuel burned per hour for each pound of thrust produced.

Figure 1-5. The Unducted Fan^{TM} engine is an ultra-high-bypass turbine engine that promises quiet operation with low fuel consumption at a speed higher than that used by turboprop-powered aircraft.

Electrically Powered Engines

While this book deals primarily with heat engines, in today's changing world of technology a short discussion of electrically powered flight is appropriate. The idea of using an electric motor as a source of power for flight has been around for quite a few years but was held back by technical challenges. Both the motor and the power source have prevented making electric power a viable alternative in the past.

In recent decades improved motor technology has become available. Several manufacturers have developed electric motors marketed for aviation propulsion. Most of these are limited to Experimental, Ultralight and LSA aircraft. However, this is changing as environmental concerns motivate aircraft manufacturers to find cleaner, quieter ways to fly. Siemens currently has developed a 260kw (348 hp) electric motor that weighs only about 50 kilograms (110 lbs). This motor, installed in an Extra 300 aerobatic aircraft, has set several electric-powered records.

While motor efficiency has been improving, the greatest challenge is developing a suitable power supply. Yet battery technology has improved immensely; with the introduction of lithium-based batteries, the weight of batteries for a given amount of energy has gone down substantially. For example, one battery manufacturer compares their 100Ah 12V lithium-iron-phosphate technology battery to a lead-acid battery with similar capacity. The lead acid weighs in at 40 kg (88 lbs), while the lithium-iron-phosphate battery weighs only 13.6 kg (30 lbs). Additionally, its life expectancy is such that it can be charged and discharged 8 to 10 times more than a lead-acid battery before it must be retired from service.

While this is a significant improvement over previous power supplies, current battery power limits the flight to a relatively short duration of one to two hours maximum. To extend this time, some research aircraft have covered the upper surfaces of the aircraft with solar cells to charge the battery whenever there is sunlight available. This is, however, expensive and very dependent upon the weather.

One solution to the electricity supply problem is to build a hybrid system similar to what hybrid automobiles utilize. A hybrid system uses a liquid-fueled engine to drive a generator that charges batteries and powers the electric motor. There are a few light aircraft operating today as hybrid systems using piston engines. The batteries supply power to assist the generator during takeoff and climb. Once power is reduced to cruise setting, the generator can maintain the cruise speed and recharge the battery. This allows a smaller engine operating at an efficient speed to power the aircraft.

This idea is promising enough that Airbus, Siemens, and Rolls-Royce are working together in partnership to develop a hybrid regional airliner design. It will use an efficient gas-turbine engine driving a generator to power the propulsion motor. Their goal is to have a technology demonstrator flying by 2020 and a production aircraft operational around 2030. Several other manufacturers are working on similar plans.

STUDY QUESTIONS: DEVELOPMENT OF AIRCRAFT POWERPLANTS
Answers are found at the end of the chapter.
1. The basic name for an engine that produces mechanical energy by changing chemical energy in the fuel into heat is a/an engine.
 2. Two types of heat engines are: a
 3. Two types of internal combustion engines used to power modern aircraft are: a b
4. A reciprocating engine in which the crankshaft is rigidly attached to the airframe and the cylinders spin with the propeller is called a/an radial engine.
5. The most popular configuration of reciprocating engine in the United States from the end of World War I through World War II was the engine.
6. The most popular configuration of reciprocating engine for private aircraft built in the United States since World War II is the engine.
7. The first practical use of a turbine in aircraft propulsion was the
8. Aircraft turbine engines are used to produce or
 9. Two types of thrust-producing aircraft turbine engines are: a b
 10. Two types of torque-producing aircraft turbine engines are: a b
11. The problem that currently limits the use of completely battery-powered electric aircraft is
12. A hybrid propulsion system has an electric motor powered by a and

INDEX

A

abradable strip411
abradable tip411
absolute pressure 31, 366, 558, 562
absolute zero
AC 43.13-1B728
AC (alternating current) 595, 596
ACC (active clearance
control)425, 486
acceleration
acceleration pump150
acceleration system150, 163
acceleration well150
accelerator pump163
accumulator, propeller691, 693
ACES ProBalancer724, 725
acetone
AC generator controls614
AC generators 598, 612
AC motors
active clearance control (ACC) 424
ADC (air data computer) 486, 588
ADI (antidetonation injection)
system
AD notes
AD oil96, 102, 103
Advisory Circular 43.13-1B730
aeolipile
Aerial Experiment Association5
aerodrome3, 5
aerodynamic-blockage reverser 520
aerodynamic twisting force (ATF)670, 683
afterburner373, 387, 388, 393, 517,
518, 521, 522

0.0.11.1	100
aft fan blades	
air bleed	<i>,</i>
air cooling	53, 271
aircraft maintenance	202 210
records	
air filters	
airfoil section	
air-fuel emulsion	
air-fuel mixture ratio	<i>,</i>
air impingement starter	
air inlet ducts	
air-oil separator	
airspeed	
air turbine starters	,
Airworthiness Directives	156, 303
Allison 501 engine	
all-weather spark plug	237
Alpha mode	700, 701
alternate air control	297, 298
alternate air system	
alternate air valves	
alternator	303, 309
alternator rotor	
altimeter	
altitude	
altitude engine	
alumel	
aluminum oxide	
amateur-built aircraft	
ambient air	
American Society of Testing	
Materials (ASTM)	101
ammeter	
analog indicator	
angle of attack 403, 404,	
	,,

annual inspection
DC generators621
annular combustor420
annular duct408, 409
annulus148, 150
annunciator panel
antidetonation
characteristics
antidetonation system (ADI)160
antifreeze
anti-icing
anti-icing system
anti-icing system for propellers735
antiseize compound251
APC (absolute pressure
controller)
API (American Petroleum Institute)
*
API gravity
(ATC)140
APU (auxiliary power
unit)
aramid fibers710
arbors
arithmetic/logic unit (ALU)584
armature
armature reaction
articulating rod
ashless-dispersant96, 102
ashless-dispersant (AD) oil101
ash test101
asymmetrical loading672
ATF (aerodynamic twisting
force)671
atmospheric pressure

atomizing nozzles476
augmentor tubes
autofeather system710
autoignition system 500, 501
automatic mixture control (AMC)153, 160, 163, 170
automatic start sequence
automobile gasoline139
Autosyn system
auxiliary fuel pump297
auxiliary power units
(APU)439, 510
aviation gasoline137, 138, 467
axial bearing load443
axial-flow air starter508
axial-flow compressors 374, 400, 401, 403, 405
axial turbine

В	
back-suction mixture	
control	. 152, 153
bacteria	
baffles	
Balzer, Stephen	4
barometric pressure	
base-mounted magnetos	
battery contactors	
battery ignition system	207, 208
battery maintenance	619
battery master switch	. 297, 298
bayonet exhaust stack	
bearing chamber	
bearing compartment	453, 454
bearings, plain	
bearing sump	
Beech 1900D	
bell cutout switch	
Bell, Dr. Alexander Graham .	5
bell mouth inlet duct	
Bell XP-59A	

Bendix drive
benzene
Bernoulli's principle 144, 261, 363, 364
Beta mode
Beta operation
Beta rods
Beta tube
Beta valve707, 708, 709
bimetallic hairspring565
bimetallic strip645
bimetallic thermostat valve453
binary number system584
BITE (built-in test
equipment)
blade attachment
blade-element theory668
blade, or pitch angle668
blade shank668
blade station668
bleed air
bleeder resistor
blended fuels
blending537, 540
blisk
blow-in doors
bluckets
BMEP (brake mean effective
pressure)
Boeing 747 10
Bon Ami
boost
boost pump 297, 298, 307, 471, 481
boost venturi144
bootstrapping197
borescope 141, 534, 540
bottle discharge button
bottle transfer switch
bottom (v.)
Bourdon tube
brake horsepower (BHP)28, 30, 39, 130

С

-
cabin heater
calibrated hairspring568
cam-ground piston65
camshaft
can-annular combustors419
capacitance afterfiring243
capacitor 208, 209, 210, 211, 212
capillary attraction156
capillary tube
Caproni-Campini CC-2
capsule-type instrument
mechanism
carbon dioxide (CO ₂)651, 652
carbon monoxide (CO) detectors 265
carbon pile voltage regulator606
carbon-residue test101
carbon seals444
carbon track
carburetor131, 133, 144, 475

1
carburetor air temperature564
carburetor heat 133, 149, 296, 308
carburetor ice 133, 160, 186, 259
cartridge starter
cascade effect
cascade thrust reverser
catalysts
CD inlet duct
CD nozzle
Celsius scale
center-line thrust airplane672
center of pressure
centistokes
centrifugal compressor 189, 262,
374, 398
centrifugal force
centrifugal twisting force
(CTF)
centrifugal twisting moment
(CTM)
ceramic
Chamberlain, Clarence
channel-chromed cylinders58
channel-chromed cylinders
channel-chromed cylinders 58 checklist 301, 302 check valve 112 cheek (crankshaft) 72 chip detector 454, 533 choked nozzle 366, 422, 507
channel-chromed cylinders
channel-chromed cylinders58checklist301, 302check valve112cheek (crankshaft)72chip detector454, 533choked nozzle366, 422, 507choke-ground cylinder56choke of a cylinder325
channel-chromed cylinders 58 checklist 301, 302 check valve 112 cheek (crankshaft) 72 chip detector 454, 533 choked nozzle 366, 422, 507 choke-ground cylinder 56 choke of a cylinder 525 chromel 566
channel-chromed cylinders58checklist301, 302check valve112cheek (crankshaft)72chip detector454, 533choked nozzle366, 422, 507choke-ground cylinder56choke of a cylinder325chromel566chromel566
channel-chromed cylinders58checklist301, 302check valve112cheek (crankshaft)72chip detector454, 533choked nozzle366, 422, 507choke-ground cylinder56choke of a cylinder325chromel566chrome-plated cylinders66circular magnetization321
channel-chromed cylinders58checklist301, 302check valve112cheek (crankshaft)72chip detector454, 533choked nozzle366, 422, 507choke-ground cylinder56choke of a cylinder325chromel566chrome-plated cylinders66circular magnetization321clamp-mounted magnetos226
channel-chromed cylinders58checklist301, 302check valve112cheek (crankshaft)72chip detector454, 533choked nozzle366, 422, 507choke-ground cylinder56choke of a cylinder325chromel566chromel566chromel321clamp-mounted magnetos226clamshell thrust reverser520
channel-chromed cylinders58checklist301, 302check valve112cheek (crankshaft)72chip detector454, 533choked nozzle366, 422, 507choke-ground cylinder56choke of a cylinder325chromel566chrome-plated cylinders66circular magnetization321clamp-mounted magnetos226clamshell thrust reverser520Class A fire643Class B fire643
$\begin{array}{c} \mbox{channel-chromed cylinders} &58 \\ \mbox{checklist} &301, 302 \\ \mbox{check valve} &112 \\ \mbox{check valve} &112 \\ \mbox{check (crankshaft)} &72 \\ \mbox{chip detector} &454, 533 \\ \mbox{choked nozzle} &366, 422, 507 \\ \mbox{choke-ground cylinder} &56 \\ \mbox{choke-ground cylinder} &56 \\ \mbox{choke of a cylinder} &56 \\ \mbox{chore-plated cylinders} &66 \\ \mbox{circular magnetization} &321 \\ \mbox{clamp-mounted magnetos} &226 \\ \mbox{class A fire} &643 \\ \mbox{Class B fire} &643 \\ \mbox{Class C fire} &643 \\ \end{array}$
$\begin{array}{c} \mbox{channel-chromed cylinders} &$
$\begin{array}{c} \mbox{channel-chromed cylinders} &58 \\ \mbox{checklist} &301, 302 \\ \mbox{check valve} &112 \\ \mbox{check valve} &112 \\ \mbox{check (crankshaft)} &72 \\ \mbox{chip detector} &454, 533 \\ \mbox{choked nozzle} &366, 422, 507 \\ \mbox{choke-ground cylinder} &56 \\ \mbox{choke-ground cylinder} &56 \\ \mbox{choke of a cylinder} &56 \\ \mbox{chore-plated cylinders} &66 \\ \mbox{circular magnetization} &321 \\ \mbox{clamp-mounted magnetos} &226 \\ \mbox{class A fire} &643 \\ \mbox{Class B fire} &643 \\ \mbox{Class C fire} &643 \\ \end{array}$

closed-loop control486
cloud point101
CO ₂ fire extinguishers653
coke101
cold-cranking simulation100
cold section
cold section inspection536
cold-tank lubrication system441
cold valve clearance90
cold-weather starting504
combustion
combustion chamber
combustion liner
combustion starters
combustion temperature
combustor
combustor (combustion
chamber)418
commutator
compensated cam223
compensated pressure113
compensating windings 603, 604
composite propeller blades 710, 729
compound-wound
generators601, 604
compression check
compression pressure ratio
compression ratio 36, 65, 134, 400, 402, 403
compressor
compressor blades411
compressor bleed air 398, 463, 469
compressor cleaning536
compressor-discharge pressure 501
compressor inlet total pressure 385
compressor repair537
compressor RPM (N or N ₂)478
compressor stall
compressor surge
compressor turbine412
computerized fuel system
-

Concorde
condition lever702, 703, 706
connecting rod68, 69, 96, 335
constant-displacement pump 111
constant-effort spring169
constant-head spring169
constant-speed propeller 32, 297, 680, 681, 720, 723
continuous-flow fuel injection143, 167
continuous-loop fire detector
contrarotating propellers714
controllable-pitch propellers671, 679, 680
convergent-divergent duct
convergent-divergent exhaust
nozzles
convergent duct
coolant temperature gage
cooling air
core engine
core engine 375, 384, 409, 533, 667, 715 corrosion 425, 426, 468 corrugated-perimeter noise suppressor suppressor 519 counterweight propeller 681, 685 cowling 273, 274, 308 cowling 272 CPU (central processing unit) 584 crankcase 77, 88, 106, 107, 328, 335 crank-pin journal 96 crankshaft 70, 71, 72, 88, 96, 327, 330, 335 creep 425 critical altitude 192 critical megine 672 critical pressure and 137, 138
core engine

CRT (cathode-ray tube) 582, 583
crude oil136
cruise propeller676
cryogenic fluid652
CSD (constant-speed drive)536, 612
CTF (centrifugal twisting force) 671
Cuno filters 115
current electricity 596, 597
current limiter604
current limiting610
Curtiss Aeroplane and Motor
Corporation5
Curtiss, Glenn5
Curtiss Jenny6
Curtiss OX-547
Curtiss OX-5 engine
Curtiss OX-5 engine
_
Curtiss-Wright Corporation5
Curtiss-Wright Corporation5 customer bleed air

D

dataplate performance54	5
dataplate specifications	8
da Vinci, Leonardo	8
DC alternators 599, 607, 609 631),
DC (direct current) 595, 59	6
DC generator	1,
DC generator and alternator system inspection	
and maintenance	9
DC generators, polarizing 62	8
deaerator	6
decarbonizer	8
deceleration	3
dedicated digital computers 584, 58	5
degreasers	8
DeHaviland DH-4	6

1 · · ·
deicing
demineralized water
density
density altitude
density controller 196
depth-type filter 115
derichment jet
derichment valve
desalination washing537
detergent oil 102
detonation
Dewar bottle
dial indicator
dial indicator
diesel engines7, 142, 166
diesel engines7, 142, 166 differential bellows

differential-pressure
controller196, 197
differential pressure indicator 574
diffuser
dipstick118, 455
direct compression check304
direct fuel injection142, 160
direct injection system166
disassembly and cleaning
DC alternators
DC generators
disposable filtering element 115
distributed pole stator609
distributor208, 213, 226, 230, 236
distributor block
divergent ducts 394, 399, 401
divergent inlet duct412
double magnetos
Douglas DC-310
Dow Corning DC-4 silicone
grease

Dowty Rotol composite propeller
blade712
drag cup
droop484
drum-type instruments557
dry-sump engine106
dry-sump lubrication
system 54, 107, 118, 439
dual ignition
dual-spool gas-turbine
engine401, 406
duct heater
durability
duty cycle497
dwell chamber442
dynamic dampers73, 329, 335
dynamic pressure559
dynamometer 30, 337

Е

economizer systems154
eddy current
edge filters 115
EEC (electronic engine
control)517, 522
effective pitch
E-gap210, 223, 224, 226
EGT (exhaust gas temperature) 132, 134, 309, 531, 545, 567
EICAS (engine indication and
crew alerting system)454, 558, 583, 587, 588
elastic limit426
electrical potential596
electrical starters
electrical systems 595
electric starters
electromagnet600
electromagnetic radiation233, 236
electromagnetic reverse-current cutout relay 607
electromagnetic reverse-current cutout relay 607 electronic engine controls

POWERPLANT

electronic fuel injection 140, 143
electronic ignition systems207
electronic imaging534
electrons
electrostatic field243
electrothermal propeller deicing system
emergency fuel control
energy
engine baffles
engine-driven air pump
engine fire
engine overhaul
engine pressure ratio (EPR) 385, 485
engine run-up
engine service manual
engine-start switch 500
engine trimming546
epicyclic reduction gears75
EP lubricant103
EPR (engine pressure
ratio)
EPR indicator
equalizing resistors
equivalent shaft horsepower (ESHP)
ESHP (equivalent shaft
horsepower)
ether
ethylene dibromide
ethylene glycol
eutectic salt
evaporative cooling
exceedance condition
exciters
exhaust back pressure 189, 257, 260, 261
exhaust bellows
exhaust bypass valve196
exhaust collector ring

exhaust gas temperature 517, 565, 566, 581
exhaust gas temperature probe 308
exhaust nozzle 385, 429, 462, 518
exhaust slip joints
exhaust stacks
exhaust system
exhaust tail pipes258
exhaust valve rotating system
exhaust valves
exit guide vanes401
expansion plug
expansion wave
Experimental Aircraft Association
(EAA)139
external-combustion engine3
extreme-pressure (EP) lubricants95, 103

F

F-22
FAA-certificated repair station 579
FAA Form 337
FADEC
Fahrenheit scale
false start
fan cowl
fan pressure ratio408
feathering propellers
feathering pump
feathering valve (FV)702
feedback ring705, 708
feed-through capacitor
feeler gages
fiber optics534
1
field coils
field coils
field coils
field coils
field coils

с
fins
fire detection systems
fire detection test lights
fire detector
fire-detector loop657
fire extinguisher
fire-extinguishing agents 652, 657
fire-extinguishing systems 651, 657
fire point100
fire protection system654
fire-pull handle654
fire shield
fire sleeve171
firewall
fire-warning light655
fire zones
firing order 50, 51, 52
fir-tree method
fixed-pitch propellers676
fixed timing
flame holders
flameout
flame tube
flanged propeller shaft 718, 719, 720
flange-mounted magnetos
flashing the field
flashover
flash point 100, 438, 467
flat-rated engine
flat-rate limit
flexible hose
flexible-tube fiber-optic scopes534,
535
flight engineer's station557
float carburetor142, 143, 151,
155, 157, 160, 296
floating cam rings
flow divider167, 168, 171, 179, 477
flowmeter 181
flowmeters for turbine engines 571

fluid density559
fluorescent penetrant
fluorescent penetrant inspection 324
flyweight governor483
flyweight-type governor
FMC (flight management computer)587
FOD (foreign object damage)397, 540, 541
force
foreign object damage (FOD)
four-cycle reciprocating engine 60
four-stroke-cycle engine
fractional distillation 129, 136
frangible
free turbine
free-turbine blades714
free-turbine engine
free-turbine turboprop engine 704
Freon
friction
friction horsepower (FHP) 28, 30
fuel-air control unit 175, 178
fuel-air mixture
fuel-air mixture ratio129, 134, 143, 145, 146
fuel control
fuel dye stain
fuel filter
fuel flow indicators567
fuel flowmeter 173, 297, 561, 570
fuel flowmeter transmitter
fuel injection system166, 187
fuel injector pump176, 178
fuel manifold valve 175, 179
fuel nozzles
fuel-oil heat exchanger476
fuel pressure477, 561
fuel pressure warning system561

fuel pumps	
fuel quantity gage	
fuel selector valve	
fuel strainer	
fuel temperature	
full-authority digital electronic control (FADEC)424, 485	
full-flow oil filter 114	

G

gage pressure
Garrett TFE731 turbofan engine412
Garrett TPE331 engine
gas generator 533, 697
gasoline
gas turbine engine
gas-turbine starter
general aviation137
General Aviation Airworthiness
Alerts
General Electric Company9
General Electric I-A engine
generator
generator field connections601
geometric pitch
gerotor pump112, 448
glass cockpit
Gloster E.28
glow plug igniter
governor
GPU (ground power unit)
graphite fibers710
gravity
grit blasting
gross thrust
ground-adjustable propeller
ground-boosted engine
growler

н

R
half-wave rectifier
halogenated hydrocarbon
Halon 1211
Halon 1301
Hamilton Standard Hydromatic
feathering propeller 119, 687
hand-propping
Harrier
Hartzell composite propeller blade711
Hartzell steel-hub feathering
propeller689, 691
Hartzell steel-hub
propeller
hazard areas
hearing protector
heat cycle
heat engine
heater muffs
heat exchanger
heat range, spark plugs
Heinkel He 178
helical spring
Heli-Coil insert 59, 243, 328
hemoglobin
heptane
high-bypass engine
high-bypass ratio engine
high-bypass-ratio turbofan
high-pressure compressor406
high-tension magneto ignition 209
high-tension transformer214
high unmetered fuel
pressure177, 181
hopper
horizontally opposed engine 48, 50, 56, 57, 60, 68, 80, 82
horsepower28, 362, 380, 572
horsepower, brake
horsepower, friction
horsepower, indicated

hot section
hot section inspection538
hot spot
hot starts
hot-tank lubricating system
hot valve clearance
hourmeter
HRD fire extinguisher
hung start
hybrid compressor engine
hybrid spark plug
hydraulic fluid97
hydraulic lock
hydraulic valve lifter80
hydromechanical fuel control 479, 480, 484, 485, 488

ice bridging239
IDG (integrated drive generator) 613
idling system162
igniters
ignition exciter
ignition harness
ignition harness tester
ignition leads 209, 211, 213, 236, 238, 252
ignition switch
ignition system components
ignition system servicing 504
IMEP (indicated mean effective
pressure)28
impulse coupling216, 228
impulse turbine blade
Inconel
indicated horsepower (IHP)28
induction air filter
induction system

induction vibrator
induction vibrator system
inertia
inertia starter
in-flight braking
injector nozzles
inlet guide vanes 401, 411
in-line engine
Inspection Authorization
instrument range marking 579, 580
intake valves
intercooler
intercylinder baffles
interference angle
interference fit
internal-combustion engine
International Civil Aviation
Organization (ICAO)
interpole

interpole	
iridium	
iso-octane	

J

Jet A	. 467, 468
Jet A-1	
Jet B	.467,468
JetCal Analyzer/Trimmer	. 545, 546
jet fuel	.467,469
jet propulsion 359, 371,	373, 375
jet reaction engines	
jeweler's file	537
joule	
JP-4	

Κ

Kelvin scale	
kerosine	137, 467
Kevlar TM	710, 711
kilopascal	
kinematic viscosity	

kinetic energy	363, 398
knuckle pin	
Koppers Aeromatic propeller	

L

labyrinth seals
Langley, Dr. Samuel
laser tachometer
last-chance oil filter452
law of conservation of energy 360
Lawrance, Charles
LCD (liquid crystal display) 583
lead fouling
lean die-out480
lean mixture139
liaison aircraft
Liberty engine
Liberty V-12
life-limited components
Lindbergh, Charles6, 44
Lindberg pneumatic fire detection
system
line-bored
line boring
link rod87
liquid cooling53, 271, 275
liquid nitrogen (N2)651, 652
loadmeter
longitudinal magnetization
low-bypass engine
low-pressure compressor406
low-pressure warning light454
low-tension magneto
low unmetered fuel
pressure
LRU (line replaceable unit) 488, 584
lubricating oils
lubrication system servicing
Lycoming XR-77556

Μ

Mach number
Magnesyn system
magnetic circuit
magnetic field209, 597, 598, 600, 602
magnetic flux 597, 598, 602
magnetic particle inspection
magnetism 596, 597
magneto207, 209, 210, 213, 216, 218, 222, 226, 237, 496
magneto check 157, 220, 231, 299
magneto drop
magneto ignition system207
magneto internal timing
magneto overhaul230
magneto safety check231
magneto timing light224, 227
main bearing inserts
main metering system162
major alteration729
major overhaul
major repair
mandrel
manifold absolute pressure (MAP)36, 563
manifold pressure
manifold pressure gage
Manly-Balzer engine
Manly, Charles4
manual fuel valve (MFV)702
manufacturer's service bulletins244, 303
MAP (manifold absolute pressure)31, 562
mass
massive electrodes240
massive electrode spark plug249
master rod

mostor mlino 701
master spline
matrix
matter
maximum fuel economy134
McCauley constant-speed feathering
propeller692
mean effective pressure (MEP)28
mechanical-blockage reverser 520
mechanical efficiency
mechanical energy
mercury barometer 558
metal fatigue
metallic-ash detergent oil102
metal propellers
methanol
methyl chloride
MFD (multifunction display) 583
mica spark plugs
microbes
microcomputers
microfilter
micrometer caliper
micrometer-type torque wrench542
microprocessors
midspan shroud
milliammeter
millibar
mineral-base oil103
minor alteration
minor repair
-
mixture control

Ν

N ₁ 406, 487
N ₂ 406, 472
NACA cowling45, 273
NACA (National Advisory
Committee for
Aeronautics)45, 273
naphtha248
NASA45
National Fire Protection Association
(NFPA)643
National Institute of Standards
and Technology
(NIS1)
naturally aspirated
engine35, 186, 561, 563
negative torque sensing (NTS) system703
negative torque sensor
net thrust
neutral plane
new-parts dimension
new-parts limits
Newton's Laws of Motion
Nichrome
nitrided steel
nitriding
noise suppressors
noncounterweight
propeller
nondestructive inspection
normal shock wave
notch sensitivity
· · · · · · ·

0

oblique shock wave	
octane rating	137, 138, 140
odometer	
ohmmeter	
oil analysis	123, 305, 456
oil control ring	

POWERPLANT

oil cooler 107, 108, 116, 120, 275, 452
oil-damped bearings
oil dilution
oil filter
oil filter bypass valve450
oil filter systems
oil pressure
oil pressure gage
oil pressure pumps
oil-pressure relief 113
oil pressure relief
valve108, 120, 449
oil quantity455
oil separator119
oil tanks446
oil temperature454, 564
oil temperature gage557
oil-to-fuel heat exchanger 437, 452
on-condition maintenance 532, 533
100-hour inspection
on-speed condition685, 707
on-speed condition propeller
operating cycle
optoelectronic devices
Otto cycle4, 22, 23, 71, 380
Otto, Dr. Nikolaus4
overboost
overhaul manual
overrunning clutch
overspeed condition, propeller 683
overspeed conditions538, 541, 685, 707
overspeed governor709
overtemperature operations541
overvoltage protector611
OX-5 engine5
oxygen

Ρ

•
paralleling switch606
paralleling terminals611
PCB (plenum chamber burning)523
peak voltage
performance deterioration
performance number 137, 138
performance rating
performance-recovery washing 537
permanent magnet
PFA 55MB
P-factor
phase sequence
photo-tach
pinion
piston displacement
piston rings
pistons
pitch distribution
pivotless breaker points
pi (π) filter
planetary gear train
planetary reduction gears 282, 430
P-lead
241, 307
plenum chamber
POH (Pilot's Operating
Handbook)
polar-inductor magneto
pole shoe603
poppet valve
porous chrome plating
positive-displacement pump448
post-inspection run-up
potential energy
pour point101, 438
power 10, 27, 28, 362
power-assurance check
power control
power enrichment system154,
163, 170

Power Jets, Ltd.	9
power lever697, 700,	, 702
power lever angle (PLA)	
powerplant	, 557
powerplant fire protection	
system	.651
power recovery turbine	262,
Pratt & Whitney of Canada	
JT15D turbofan	.439
PT610, 395, 421, 430, 696, 704	447,
PT6 turboprop	.411
R-1830	10
R-4360	6, 47
preflight inspection231,	, 536
preignition	333
preinspection run-up	. 304
prepreg	. 711
preservative oil	97
pressure	, 558
pressure altitude	, 572
pressure carburetor 160, 161,	, 187
pressure cooling 53, 273,	, 274
pressure-injection carburetor142, 160,	166,
184, 185	107
pressure pump	
pressure ratio	
pressure-ratio controller	
pressure relief valve 112, 474	
pressure rise per stage pressure subsystem	
pressure waves	
pressurizing valve	
prevailing torque	
primary air	
primary electrical circuit	
Prist	
profile tip	
profilometer	
projecting electrodes	. 241

prony brake
propeller
propeller auxiliary systems
propeller balance
propeller cone bottoming
propeller control lever
propeller efficiency
propeller governor 109, 299, 310, 684, 701, 709
propeller ice control734
propeller inspections
propeller installation, inspection,
and maintenance718
propeller pitch control
propeller pitch control (PPC)701
propeller reduction gear
propeller reduction gearing74, 89
propeller reduction gear systems 429
propeller repairability730
propeller repairs and alterations 729
propeller spinner
propeller storage728
propeller synchronizer system 733
propeller track
propeller vibration
proper light up
Propfan [™] engine
propulsive efficiency
propulsive force
Prussian blue transfer dye
pulsating DC
pulse-jet engines
pulse-jets
pusher propeller
pushrod79, 81, 337

Q

quill shaft76

R

n
radial bearing load442
radial engine
radial-inflow turbine 189, 262, 422
radiator
radioactive material
ram effect
ramjet
ramjet engine
ramjets
ram pressure
RAM (Random-Access
Memory)
ram-recovery speed
Rankine scale
rate-of-change controller 193, 195
rate-of-temperature-rise
fire-warning systems647
ratiometer instruments564
reaction engine
reaction turbine blades
reactive power (electrical)614
rebuilt engine
reciprocating engine removal and
installation
reciprocating engines
rectifier599, 609
rectifier diodes635
reheat system521
Reid vapor pressure137
reliability
relief valves113
residual magnetism600, 601
residual voltage
resistor spark plug242
resultant flux
resultant wind403
retard breaker points
retarded spark
reverse-current cutout
reverse-flow combustor412, 421

reversible constant-speed
propellers
RF (radio frequency) energy497
rich blowout
rich mixture139
riffle file
rigid-tube borescope534, 535
ring rotation58
ripple frequency600
rocker arm60, 79, 81, 82
rocket engine
roller bearings
Rolls-Royce Pegasus
Rolls-Royce turbofans
ROM (Read-Only Memory) 584
rotary inverters615
rotary radial engine
rotating combustion (RC) engine7
rotor
rotor blades410
RPM drop
RPM limitations
RSA fuel injection
RSA fuel injection system167
run-in schedule

S

secondary air41	9
sector gear	1
self-accelerating speed53	2
self-sustaining speed50	7
semiconductor50	3
semiconductor diodes60	9
semiconductor rectifiers59	9
semiconductor transducer58	3
semisynthetic oil10	3
series-wound motor28	2
serviceable limits	7,
service bulletins156, 315, 31	9
service letters	9
servo regulator17	2
servo system48	0
servo valve168, 16	9
shaft horsepower	8
shear section473, 50	7
shielding233, 237, 241, 50	4
shingling54	1
shock wave134, 136, 51	8
shop work order	5
Shower of Sparks ignition system218, 28	7
shrouded turbine blades42	
shunt-wound generators60	3
single-entry centrifugal compressor	9
single-shaft turbine engine69	6
skin radiator27	1
sleeve valves6	0
slip66	9
slip mark57	
slip ring59	8
slipstream29	9
slow-blow fuse60	4
sludge),
sludge plugs	9
slug	1
SMOH (since major overhaul)31	5

snubber
SOAP (spectrometric oil analysis
program)
solid-fuel rockets
solid-state inverters
solid-state transducers
sound suppressor519
spark igniters
spark plug
spark plug bomb tester250
spark plug gapping249
spark plug leads241
spark plug reach
spark plug servicing247, 249
specific fuel
consumption40, 131, 407
specific gravity adjustment
specific weight45
spectrometric analysis533
spectrometric oil analysis
program123
speed
speed of sound 368, 422, 507, 670
speed, or condition, lever697
speed ring
Spirit of St. Louis6
spline718
splined propeller shaft721
sprag clutch507
springback, 158
spring-loaded bypass valve472
spur-gear pump 111, 448
"square" engines
squealer tips411
squeeze film bearings
squib653
SSU viscosity
stage length713
staggered ignition timing
standard atmospheric
conditions

standard day
standard day
conditions
Standard J-1
starter-generator
starter relay
starter solenoids
starters with Bendix drive
starters with overrunning clutch 283
starters with right-angle
drive adapter
start-lock pin700
static electricity
static flux211
static pressure
static RPM
static temperature
stator
stator vanes
stator windings
steam cooling
stellite
stepping motor
Stoddard solvent
stoichiometric mixture
storage capacitor
straight mineral oil
straight-run gasoline
strainer
stratosphere
stress-rupture cracks
stroboscopic or laser tachometer 568
stroboscopic tachometer
SU-35
subsonic flow
subsonic inlet duct
sump106, 107, 109, 468
sump106, 107, 109, 468 supercharged engine186
sump 106, 107, 109, 468 supercharged engine
sump106, 107, 109, 468 supercharged engine186

supersonic inlet ducts	. 396
supersonic speed	. 518
Supplemental Type Certificate	
(STC)	. 139
surface filtration	. 115
surface plate	. 328
surge	.480
synchronous motor	. 569
synchrophasing system	. 734
synchroscopes	. 570
synthetic oil103,	438
systematic troubleshooting	. 343
Systron-Donner pneumatic fire	
detection system	. 650

Т

table of limits	
tachometer	
567, 568, 569, 570, 5	581
tail pipe	517, 518
tapered propeller shaft	722
tappet	
tappet bodies	334, 335, 336
Taylor, Charles	4
TBO (time between over 45, 295, 314, 374	hauls) 44,
TCM fuel injection syste	m 175, 177
telescoping gage	
TEL (tetraethyl lead)	140, 468
temperature	
temperature distribution,	
engine	
test club	
testing	
DC alternator output	637
DC generator output	630
tetraethyl lead (TEL)	136
thermal efficiency 32, 479	, 33, 130, 131,
thermal shock	53
thermistor	649

thermocouple132, 567, 647
thermocouple fire sensor648
thermocouple instruments565
thermocouple sensor
thermocouple-type instruments 581
thermosetting resin
thermostatic valve 108, 113, 117
thermoswitch
three-dimensional cam
throttle
throttle control
throttle lever
throttle lever angle
throttle valve
thrust
667, 668, 672
thrust bending force
thrust horsepower
thrust reversers
thrust specific fuel consumption
(TSFC)11
thrust vector control system
time between overhauls
time between overhauls (TBO)44, 45, 57
time between overhauls (TBO)44, 45, 57 Time-Rite indicator226
(TBO)44, 45, 57 Time-Rite indicator226
(TBO)
(TBO)44, 45, 57 Time-Rite indicator226
(TBO)44, 45, 57 Time-Rite indicator226 TIT limitations485 TIT (turbine inlet temperature)425,
(TBO)44, 45, 57 Time-Rite indicator226 TIT limitations485 TIT (turbine inlet temperature)425, 699
(TBO)
(TBO)44, 45, 57 Time-Rite indicator226 TIT limitations485 TIT (turbine inlet temperature)425, 699 top overhaul314 torque30, 380, 423, 572, 573, 575 torque bending force671
(TBO)44, 45, 57 Time-Rite indicator226 TIT limitations485 TIT (turbine inlet temperature)425, 699 top overhaul314 torque30, 380, 423, 572, 573, 575 torque bending force671 torquemeter30, 567, 571, 572, 575
(TBO)
(TBO)
(TBO)44, 45, 57 Time-Rite indicator226 TIT limitations485 TIT (turbine inlet temperature)425, 699 top overhaul314 torque30, 380, 423, 572, 573, 575 torque bending force671 torquemeter30, 567, 571, 572, 575 torquemeter oil pressure710 torque sensor
(TBO)
(TBO)
(TBO)
$(TBO) \dots 44, 45, 57$ Time-Rite indicator \ldots 226 TIT limitations \ldots 485 TIT (turbine inlet temperature) \ldots 425, 699 top overhaul \ldots 314 torque \ldots 30, 380, 423, 572, 573, 575 torque bending force \ldots 671 torquemeter \ldots 30, 567, 571, 572, 575 torquemeter oil pressure \ldots 710 torque sensor \ldots 573, 574 torque wrenches \ldots 306, 541, 543 torsional vibration \ldots 73, 76 total air temperature \ldots 486 total energy \ldots 364 total pressure \ldots 366, 559
(TBO)

Townend ring	273
track	.723
tractor propeller672,	
transformer	615
transformer-rectifier (TR)	.611
transonic range	.670
trend monitoring533,	539
trichlorethylene	. 324
tricresyl phosphate (TCP)	. 138
troubleshooting	347
true power (electrical)	.614
TSFC (thrust specific fuel	
consumption)	
turbine	
turbine engine cooling systems	
turbine engine exhaust	
turbine engine fuel	
turbine engine fuel control	
turbine engine fuel system 471,	
turbine-engine igniters	
turbine engine ignition systems	
turbine engine maintenance	.532
turbine engine operation	
turbine engine testing	. 545
turbine engine troubleshooting	
turbine inlet guide vanes 422, 462, 699	425,
turbine inlet temperature	
(TIT)	
turbine nozzle	
turbocharger 101, 177, 189, 191, 258, 262, 308, 562	
turbocharger intercooler	
turbofan engine	388, 713
turbojet	
turbojet engine 375, 377, 488, 667, 713	519,
turboprop	.375
turboprop engine	696
turboshaft engine	.376

POWERPLANT

turbosuperchargers8, 9, 32, 189,
258, 373
two-position propeller680
two-stroke-cycle engine22, 25
Type Certificate Data Sheets 579

U

UDF engine (Unducted Fan [™])713
UHB engine 11, 378, 713, 714
under-frequency protection612
underspeed condition685
underspeed condition, propeller 683
underspeed governor (USG)701
Unducted Fan TM engine11, 378
Unducted Fan TM propellers673
unidirectional fibers711
universal propeller protractor677
upper-deck air pressure178
upper-deck pressure

V

valve grinding machine	
valve guide	
valve lash	
valve lifters	
valve overlap	
valve reconditioning	
valve seat	62, 332, 334
valve springs	
vane-type flowmeter	
vane-type pumps	
vaporizing nozzles	
vapor lock	
vapor pressure	137, 468, 564
variable absolute pressu controller (VAPC)	
variable-angle stators	
variable guide vanes	
variable inlet duct	

variable-orifice mixture control 152	
variable stator vane control	
varsol248, 318, 319	
vectored thrust engines 522, 523	
velocity	
velocity turbine	
V-engine	
vent subsystem	
venturi 143, 144, 147, 148, 150, 168	
vernier coupling	
vernier scale678	
vertical tape instrument557	
vibrating-type voltage regulator 607	
vibration loop171, 180	
vibration sensing unit725	
video imaging system536	
videoscopes540	
VIFF (vectoring in forward	
flight)	
-	
viscosimeter	

W

**
wafer screen filter
wake
walk-around inspection653
Wankel, Felix7
waste gate191, 193
waste-gate valve192
water-cooled engines275
water injection
watt28
weight
wet-sump engine 106, 118
wet-sump lubrication
system 108, 439
wet-sump systems
wet-type vacuum pump108
Whittle, Sir Frank9, 374
wide-cut fuel
windmilling propeller689
wood propellers676, 727
work
worm gear
worm-gear
wound-rotor magneto
Wright
Flyer4, 667, 676
J-5 engine6, 44
J-5 Whirlwind engine272
J6-544
R-3350 engine264, 272
Wilbur and Orville4
Wright Aeronautical
Corporation
wrist pin

Z

zero-lash valve lifter 80, 81